Which of the following could be an equation of the line graphed in the xy-plane above?
- A. y=-x-3
- B. y=-x+3
- C. y=x-3
- D. y=x+3
Correct Answer & Rationale
Correct Answer: D
To determine the equation of the line, we analyze its slope and y-intercept. The line in the graph has a positive slope, indicating that as \(x\) increases, \(y\) also increases. Option D, \(y = x + 3\), has a positive slope of 1 and a y-intercept of 3, aligning with the graph's characteristics. Option A, \(y = -x - 3\), has a negative slope and would decrease as \(x\) increases, which contradicts the graph. Option B, \(y = -x + 3\), also has a negative slope, leading to a downward trend. Option C, \(y = x - 3\), has a positive slope but a y-intercept of -3, placing it below the graph. Thus, D is the only option that fits the observed line.
To determine the equation of the line, we analyze its slope and y-intercept. The line in the graph has a positive slope, indicating that as \(x\) increases, \(y\) also increases. Option D, \(y = x + 3\), has a positive slope of 1 and a y-intercept of 3, aligning with the graph's characteristics. Option A, \(y = -x - 3\), has a negative slope and would decrease as \(x\) increases, which contradicts the graph. Option B, \(y = -x + 3\), also has a negative slope, leading to a downward trend. Option C, \(y = x - 3\), has a positive slope but a y-intercept of -3, placing it below the graph. Thus, D is the only option that fits the observed line.
Other Related Questions
For all positive integers n, let n be defined as the sum of the positive divisors of n. For example, bullet 9 = 1 + 3 + 9 = 13. Which of the following is equal to 16 - 15?
- A. 41
- B. 3
- C. 4
- D. 5
Correct Answer & Rationale
Correct Answer: C
To solve the expression 16 - 15, we first perform the subtraction, which yields 1. Now, examining the options: A: 41 is incorrect as it does not equal 1. B: 3 is also incorrect, as it is greater than 1. C: 4 is the only option that meets the criteria, but it is not equal to 1, making it incorrect as well. D: 5 is incorrect for the same reason; it does not equal 1. None of the options accurately represent the result of 16 - 15, which is 1. The question seems to have an error in its provided options, as none align with the correct calculation.
To solve the expression 16 - 15, we first perform the subtraction, which yields 1. Now, examining the options: A: 41 is incorrect as it does not equal 1. B: 3 is also incorrect, as it is greater than 1. C: 4 is the only option that meets the criteria, but it is not equal to 1, making it incorrect as well. D: 5 is incorrect for the same reason; it does not equal 1. None of the options accurately represent the result of 16 - 15, which is 1. The question seems to have an error in its provided options, as none align with the correct calculation.
If the length of a rectangle is increased by 30% and the width of the same rectangle is decreased by 30%, what is the effect on the area of the rectangle?
- A. It is increased by 60%.
- B. It is unchanged.
- C. It is decreased by 15%.
- D. It is decreased by 9%.
Correct Answer & Rationale
Correct Answer: D
Increasing the length of a rectangle by 30% results in a new length of 1.3L, while decreasing the width by 30% gives a new width of 0.7W. The new area can be calculated as A' = (1.3L)(0.7W) = 0.91LW, indicating a decrease in area. Option A is incorrect because a 60% increase does not occur; the area actually decreases. Option B is wrong as the area changes due to the modifications in dimensions. Option C suggests a decrease of 15%, which miscalculates the area change. The area decreases by 9%, confirming the effect of the opposing percentage changes in length and width.
Increasing the length of a rectangle by 30% results in a new length of 1.3L, while decreasing the width by 30% gives a new width of 0.7W. The new area can be calculated as A' = (1.3L)(0.7W) = 0.91LW, indicating a decrease in area. Option A is incorrect because a 60% increase does not occur; the area actually decreases. Option B is wrong as the area changes due to the modifications in dimensions. Option C suggests a decrease of 15%, which miscalculates the area change. The area decreases by 9%, confirming the effect of the opposing percentage changes in length and width.
Fred, Norman, and Dave own a total of 128 comic books. If Dave owns 44 of them, what is the average (arithmetic mean) number of comic books owned by Fred and Norman?
- A. 42
- B. 44
- C. 46
- D. 48
Correct Answer & Rationale
Correct Answer: A
To find the average number of comic books owned by Fred and Norman, first determine how many comic books they collectively own. Since Dave has 44 comic books, subtract this from the total: 128 - 44 = 84. Fred and Norman together own 84 comic books. To find the average for the two, divide this number by 2: 84 ÷ 2 = 42. Option B (44) incorrectly assumes Fred and Norman have more than they actually do. Option C (46) miscalculates the average by not considering the correct total for Fred and Norman. Option D (48) similarly overestimates their combined ownership. Thus, the average is accurately calculated as 42.
To find the average number of comic books owned by Fred and Norman, first determine how many comic books they collectively own. Since Dave has 44 comic books, subtract this from the total: 128 - 44 = 84. Fred and Norman together own 84 comic books. To find the average for the two, divide this number by 2: 84 ÷ 2 = 42. Option B (44) incorrectly assumes Fred and Norman have more than they actually do. Option C (46) miscalculates the average by not considering the correct total for Fred and Norman. Option D (48) similarly overestimates their combined ownership. Thus, the average is accurately calculated as 42.
Square S has area 2√2 square units. What is the length of a side of square S?
- A. ∜128
- B. ∜32
- C. ∜8
- D. ∜2
Correct Answer & Rationale
Correct Answer: C
To find the length of a side of square S, we use the formula for the area of a square, which is \( \text{Area} = \text{side}^2 \). Given that the area is \( 2\sqrt{2} \), we set up the equation \( \text{side}^2 = 2\sqrt{2} \). Taking the square root gives us \( \text{side} = \sqrt{2\sqrt{2}} = \sqrt{2} \cdot \sqrt[4]{2} = \sqrt{2^2} = \sqrt{8} = 2\sqrt{2} \), which simplifies to \( \sqrt{8} \), leading to option C as the correct answer. Options A (\(\sqrt{128}\)), B (\(\sqrt{32}\)), and D (\(\sqrt{2}\)) are incorrect as they yield values greater than or less than the required side length. Specifically, \(\sqrt{128} = 8\sqrt{2}\) and \(\sqrt{32} = 4\sqrt{2}\) are both larger than \(2\sqrt{2}\), while \(\sqrt{2}\) is significantly smaller. Thus, option C accurately represents the side length of square S.
To find the length of a side of square S, we use the formula for the area of a square, which is \( \text{Area} = \text{side}^2 \). Given that the area is \( 2\sqrt{2} \), we set up the equation \( \text{side}^2 = 2\sqrt{2} \). Taking the square root gives us \( \text{side} = \sqrt{2\sqrt{2}} = \sqrt{2} \cdot \sqrt[4]{2} = \sqrt{2^2} = \sqrt{8} = 2\sqrt{2} \), which simplifies to \( \sqrt{8} \), leading to option C as the correct answer. Options A (\(\sqrt{128}\)), B (\(\sqrt{32}\)), and D (\(\sqrt{2}\)) are incorrect as they yield values greater than or less than the required side length. Specifically, \(\sqrt{128} = 8\sqrt{2}\) and \(\sqrt{32} = 4\sqrt{2}\) are both larger than \(2\sqrt{2}\), while \(\sqrt{2}\) is significantly smaller. Thus, option C accurately represents the side length of square S.