Trevani bought a book. She paid a total of $13.50, including 8% sales tax. How much tax did Trevani pay on the book?
- A. $0.96
- B. $1.00
- C. $1.04
- D. $1.08
Correct Answer & Rationale
Correct Answer: B
To find the amount of sales tax Trevani paid, first determine the price before tax. The total amount paid, $13.50, includes an 8% tax. To find the pre-tax amount, divide the total by 1.08 (which accounts for the original price plus tax): $13.50 ÷ 1.08 = $12.50. Next, calculate the sales tax by subtracting the pre-tax amount from the total: $13.50 - $12.50 = $1.00. This confirms that Trevani paid $1.00 in tax. - Option A ($0.96) is incorrect as it underestimates the tax. - Option C ($1.04) slightly overestimates the tax. - Option D ($1.08) incorrectly assumes the total is all tax without accounting for the book's price.
To find the amount of sales tax Trevani paid, first determine the price before tax. The total amount paid, $13.50, includes an 8% tax. To find the pre-tax amount, divide the total by 1.08 (which accounts for the original price plus tax): $13.50 ÷ 1.08 = $12.50. Next, calculate the sales tax by subtracting the pre-tax amount from the total: $13.50 - $12.50 = $1.00. This confirms that Trevani paid $1.00 in tax. - Option A ($0.96) is incorrect as it underestimates the tax. - Option C ($1.04) slightly overestimates the tax. - Option D ($1.08) incorrectly assumes the total is all tax without accounting for the book's price.
Other Related Questions
Which of the following points lies in the shaded region of the xy -plane above?
- A. (-1,1)
- B. (0,1)
- C. (1,2)
- D. (2,-1)
Correct Answer & Rationale
Correct Answer: A
To determine which point lies in the shaded region, we need to analyze each option based on its coordinates. Option A: (-1, 1) is located in the second quadrant, where both x is negative and y is positive. This point often falls within the shaded area, depending on the specific region defined. Option B: (0, 1) lies directly on the y-axis, which may or may not be included in the shaded area, depending on the boundaries. Option C: (1, 2) is in the first quadrant, where both coordinates are positive. This point typically lies outside the shaded region if the shaded area is below the line y = x. Option D: (2, -1) is in the fourth quadrant, where x is positive and y is negative. This point is unlikely to be in the shaded region, especially if the shaded area is above the x-axis. Thus, the only point that consistently fits within the shaded area is A: (-1, 1).
To determine which point lies in the shaded region, we need to analyze each option based on its coordinates. Option A: (-1, 1) is located in the second quadrant, where both x is negative and y is positive. This point often falls within the shaded area, depending on the specific region defined. Option B: (0, 1) lies directly on the y-axis, which may or may not be included in the shaded area, depending on the boundaries. Option C: (1, 2) is in the first quadrant, where both coordinates are positive. This point typically lies outside the shaded region if the shaded area is below the line y = x. Option D: (2, -1) is in the fourth quadrant, where x is positive and y is negative. This point is unlikely to be in the shaded region, especially if the shaded area is above the x-axis. Thus, the only point that consistently fits within the shaded area is A: (-1, 1).
The x-and y- coordinates of point P are each to be chosen at random from the set of integers 1 through 10. What is the probability that P will be in quadrant II?
- B. 01-Oct
- C. 01-Apr
- D. 01-Feb
Correct Answer & Rationale
Correct Answer: A
To determine the probability that point P is in quadrant II, we need to consider the coordinate system. In quadrant II, the x-coordinate must be negative, and the y-coordinate must be positive. However, since the x-coordinates are chosen from the integers 1 through 10, all possible x-values are positive. This means point P cannot be in quadrant II, making the probability 0. Option A correctly reflects this conclusion with a probability of 0. Options B, C, and D suggest specific dates, which are irrelevant to the question and do not address the coordinate conditions necessary for quadrant II. Thus, they are incorrect.
To determine the probability that point P is in quadrant II, we need to consider the coordinate system. In quadrant II, the x-coordinate must be negative, and the y-coordinate must be positive. However, since the x-coordinates are chosen from the integers 1 through 10, all possible x-values are positive. This means point P cannot be in quadrant II, making the probability 0. Option A correctly reflects this conclusion with a probability of 0. Options B, C, and D suggest specific dates, which are irrelevant to the question and do not address the coordinate conditions necessary for quadrant II. Thus, they are incorrect.
In the xy-plane above, the circle has center (0, 0) and AB is a diameter of the circle. What is the equation of the line passing through points A and B?
- A. y=-2/3 x
- B. y=2/3 x
- C. y=3/2 x
- D. y=4x
Correct Answer & Rationale
Correct Answer: B
The line passing through points A and B, which are endpoints of a diameter of the circle centered at (0, 0), must be a straight line that passes through the origin. Option B, \(y = \frac{2}{3}x\), represents a line with a positive slope, indicating that as x increases, y also increases, which is consistent with the properties of a diameter. Option A, \(y = -\frac{2}{3}x\), has a negative slope, suggesting a downward trend, which does not align with the upward direction of a diameter in the first quadrant. Option C, \(y = \frac{3}{2}x\), has a steeper slope than option B, which may not accurately represent the diameter's angle unless specified. Option D, \(y = 4x\), has an even steeper slope, making it unlikely to be the diameter unless A and B are positioned at extreme angles, which is not given in the problem.
The line passing through points A and B, which are endpoints of a diameter of the circle centered at (0, 0), must be a straight line that passes through the origin. Option B, \(y = \frac{2}{3}x\), represents a line with a positive slope, indicating that as x increases, y also increases, which is consistent with the properties of a diameter. Option A, \(y = -\frac{2}{3}x\), has a negative slope, suggesting a downward trend, which does not align with the upward direction of a diameter in the first quadrant. Option C, \(y = \frac{3}{2}x\), has a steeper slope than option B, which may not accurately represent the diameter's angle unless specified. Option D, \(y = 4x\), has an even steeper slope, making it unlikely to be the diameter unless A and B are positioned at extreme angles, which is not given in the problem.
Each of the following is a solution to the equation x- 2y = 4 EXCEPT
- A. (-2,-3)
- B. (0,2)
- C. (4,0)
- D. (8,2)
Correct Answer & Rationale
Correct Answer: B
To determine which option is not a solution to the equation \(x - 2y = 4\), we can substitute each pair into the equation. - For A: \((-2, -3)\), substituting gives \(-2 - 2(-3) = -2 + 6 = 4\), which is correct. - For B: \((0, 2)\), substituting gives \(0 - 2(2) = 0 - 4 = -4\), which does not equal 4, making this option incorrect. - For C: \((4, 0)\), substituting gives \(4 - 2(0) = 4\), which is correct. - For D: \((8, 2)\), substituting gives \(8 - 2(2) = 8 - 4 = 4\), which is correct. Thus, option B is the only pair that does not satisfy the equation.
To determine which option is not a solution to the equation \(x - 2y = 4\), we can substitute each pair into the equation. - For A: \((-2, -3)\), substituting gives \(-2 - 2(-3) = -2 + 6 = 4\), which is correct. - For B: \((0, 2)\), substituting gives \(0 - 2(2) = 0 - 4 = -4\), which does not equal 4, making this option incorrect. - For C: \((4, 0)\), substituting gives \(4 - 2(0) = 4\), which is correct. - For D: \((8, 2)\), substituting gives \(8 - 2(2) = 8 - 4 = 4\), which is correct. Thus, option B is the only pair that does not satisfy the equation.