A researcher conducted an investigation about how the human body changes during exercise. The researcher's procedure is outlined below.
Experimental Procedure:
1. Observe and record the body temperature, breathing rate, and heart rate of a test subject at rest.
2. The subject jumps rope for 10 minutes.
3. Every two minutes, the researcher records the body temperature, breathing rate, and heart rate of the test subject.
4. Repeat procedure with additional subjects.
Which hypothesis is suitable for this investigation?
- A. Body temperature, breathing rate, and heart rate depend on the health of the subject.
- B. Many of the body's systems respond to exercise.
- C. Body temperature, breathing rate, and heart rate increase with exercise.
- D. Subjects at rest have better health than subjects that exercise.
Correct Answer & Rationale
Correct Answer: C
Option C effectively addresses the investigation by predicting a specific relationship: that body temperature, breathing rate, and heart rate will increase with exercise. This hypothesis is testable and directly relates to physiological responses during physical activity. Option A is too broad, as it suggests a general relationship between health and various physiological metrics without focusing on exercise. Option B, while relevant, lacks specificity regarding the measurable changes in body temperature, breathing rate, and heart rate. Option D presents a misleading comparison, as it contradicts established knowledge about the benefits of exercise for health.
Option C effectively addresses the investigation by predicting a specific relationship: that body temperature, breathing rate, and heart rate will increase with exercise. This hypothesis is testable and directly relates to physiological responses during physical activity. Option A is too broad, as it suggests a general relationship between health and various physiological metrics without focusing on exercise. Option B, while relevant, lacks specificity regarding the measurable changes in body temperature, breathing rate, and heart rate. Option D presents a misleading comparison, as it contradicts established knowledge about the benefits of exercise for health.
Other Related Questions
best explains the ammonia deposits found in ice core samples from the time of the Tunguska Event. The evidence that best supports the validity of this hypothesis is the-
- A. Hypothesis 2
- B. heat produced by fast-moving objects in the atmosphere
- C. Hypothesis 1
- D. match between measured and predicted amounts of ammonia
Correct Answer & Rationale
Correct Answer: A,D
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
Placing solid ammonium nitrate, NH4NO3, in a container of water causes an endothermic reaction. The result is ammonium hydroxide, NH4OH, and nitric acid, HNO3. Which diagram shows the correct equation for the reaction?
- A. NH4OH + HNO3 → NH4NO3 + H2O + energy
- B. NH4NO3 + H2O + energy → NH4OH + HNO3
- C. NH4NO3 + H2O → NH4OH + HNO3 + energy
- D. NH4OH + HNO3 + energy → NH4NO3 + H2O
Correct Answer & Rationale
Correct Answer: B
The reaction involving solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Option B accurately reflects this by showing ammonium nitrate and water reacting to form ammonium hydroxide and nitric acid while requiring energy input, consistent with the endothermic nature of the process. Option A incorrectly suggests that energy is released, which contradicts the reaction's endothermic characteristic. Option C also misrepresents the energy aspect, implying that energy is produced, which is not the case. Option D similarly indicates that energy is released, misaligning with the reaction's true nature.
The reaction involving solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Option B accurately reflects this by showing ammonium nitrate and water reacting to form ammonium hydroxide and nitric acid while requiring energy input, consistent with the endothermic nature of the process. Option A incorrectly suggests that energy is released, which contradicts the reaction's endothermic characteristic. Option C also misrepresents the energy aspect, implying that energy is produced, which is not the case. Option D similarly indicates that energy is released, misaligning with the reaction's true nature.
Which hypothesis was Dilger testing in his experiment?
- A. If hybrid offspring have a mixture of behaviors, then the species are within the same genus.
- B. If a hybrid offspring carries nesting material in its beak, then it is more closely related to modern lovebirds.
- C. If behavior in lovebirds is genetic, then a hybrid offspring will display a mixture of behaviors.
- D. If lovebird species can interbreed, then a hybrid offspring will have a mixture of behaviors.
Correct Answer & Rationale
Correct Answer: C
Dilger aimed to investigate the genetic basis of behavior in lovebirds, specifically focusing on whether hybrid offspring exhibit a blend of behaviors from their parent species. Option C accurately reflects this hypothesis, linking genetic inheritance to behavioral traits in hybrids. Option A incorrectly connects hybrid behavior to taxonomic classification, which is not the primary focus of Dilger’s study. Option B suggests a direct relationship between nesting material behavior and modern lovebirds, overlooking the broader genetic implications. Option D, while related to interbreeding, does not emphasize the genetic aspect of behavior, which is central to Dilger's hypothesis.
Dilger aimed to investigate the genetic basis of behavior in lovebirds, specifically focusing on whether hybrid offspring exhibit a blend of behaviors from their parent species. Option C accurately reflects this hypothesis, linking genetic inheritance to behavioral traits in hybrids. Option A incorrectly connects hybrid behavior to taxonomic classification, which is not the primary focus of Dilger’s study. Option B suggests a direct relationship between nesting material behavior and modern lovebirds, overlooking the broader genetic implications. Option D, while related to interbreeding, does not emphasize the genetic aspect of behavior, which is central to Dilger's hypothesis.
A 60W light bulb used .48 kilowatt hours of electricity. How long was the light bulb on?
- A. 0.48 hours
- B. 28.8 hours
- C. 0.125 hours
- D. 8 hours
Correct Answer & Rationale
Correct Answer: D
To determine how long the 60W light bulb was on, we first convert the energy used from kilowatt hours to watt hours: 0.48 kWh equals 480 watt hours. Using the formula: time (hours) = energy (watt hours) / power (watts), we calculate: 480 watt hours / 60 watts = 8 hours. Option A (0.48 hours) underestimates the time significantly. Option B (28.8 hours) incorrectly suggests the bulb was on much longer than the energy consumed allows. Option C (0.125 hours) miscalculates by assuming a much higher power consumption. Only option D accurately reflects the time the bulb was on based on the energy used.
To determine how long the 60W light bulb was on, we first convert the energy used from kilowatt hours to watt hours: 0.48 kWh equals 480 watt hours. Using the formula: time (hours) = energy (watt hours) / power (watts), we calculate: 480 watt hours / 60 watts = 8 hours. Option A (0.48 hours) underestimates the time significantly. Option B (28.8 hours) incorrectly suggests the bulb was on much longer than the energy consumed allows. Option C (0.125 hours) miscalculates by assuming a much higher power consumption. Only option D accurately reflects the time the bulb was on based on the energy used.