Solar panels capture sunlight and convert it to electricity, using photovoltaic (PV) cells. Each PV cell has several components, including two layers of silicon. One of these layers is injected with phosphorus, which creates an excess of electrons in the layer compared to pure silicon. The other layer is injected with boron, which causes the layer to have fewer electrons than pure silicon. When the two different silicon layers are put together, electrons move from the phosphorus-injected layer to the boron- Injected layer. This gives the boron-injected layer a negative charge where the two layers meet, creating an electric field at the junction of the layers. As sunlight hits a PV cell, electrons in each silicon layer become excited and move around the layer. When any electron reaches the junction between the two layers, the electric field pushes the electron toward metal conductor strips on the outside of the cell, generating electricity.
A diagram of a PV cell being exposed to sunlight is shown below. Click on the labels you want to select and drag them into the boxes to show the components of the PV cell.
- A. Phosphorus-injected layer
- B. Boron-injected layer
- C. Electric field
- D. Energy
Correct Answer & Rationale
Correct Answer: A,B,C
The components of a photovoltaic (PV) cell include the phosphorus-injected layer, which serves as the n-type semiconductor, and the boron-injected layer, acting as the p-type semiconductor. Together, these layers create a junction that facilitates the movement of electrons when exposed to sunlight. The electric field between these layers is crucial for separating charge carriers, enabling electricity generation. Option D, "Energy," is not a structural component of the PV cell but rather a result of its operation. It does not represent a physical part of the cell, making it an incorrect choice.
The components of a photovoltaic (PV) cell include the phosphorus-injected layer, which serves as the n-type semiconductor, and the boron-injected layer, acting as the p-type semiconductor. Together, these layers create a junction that facilitates the movement of electrons when exposed to sunlight. The electric field between these layers is crucial for separating charge carriers, enabling electricity generation. Option D, "Energy," is not a structural component of the PV cell but rather a result of its operation. It does not represent a physical part of the cell, making it an incorrect choice.
Other Related Questions
which sentence describes a difference between artificial selection and natural selection?
- A. In natural selection, variation is heritable; in artificial selection, variation is not heritable.
- B. In natural selection, there is differential reproduction; in artificial selection, there is not differential reproduction.
- C. In natural selection, there is variation within the population of organisms; in artificial selection, there is no variation within the population or organisms.
- D. In natural selection, reproductive success is driven by naturally occurring processes; in artificial selection, reproductive success is driven by human-imposed processes.
Correct Answer & Rationale
Correct Answer: D
Natural selection occurs through naturally occurring processes where organisms with advantageous traits are more likely to survive and reproduce, leading to evolutionary change over time. In contrast, artificial selection involves human intervention, where specific traits are chosen for breeding based on human preferences. Option A is incorrect; both types of selection involve heritable variation. Option B misrepresents artificial selection, which also involves differential reproduction based on selected traits. Option C is inaccurate as artificial selection can still involve variation within the chosen traits. Thus, option D accurately highlights the fundamental distinction between the two processes.
Natural selection occurs through naturally occurring processes where organisms with advantageous traits are more likely to survive and reproduce, leading to evolutionary change over time. In contrast, artificial selection involves human intervention, where specific traits are chosen for breeding based on human preferences. Option A is incorrect; both types of selection involve heritable variation. Option B misrepresents artificial selection, which also involves differential reproduction based on selected traits. Option C is inaccurate as artificial selection can still involve variation within the chosen traits. Thus, option D accurately highlights the fundamental distinction between the two processes.
Based on the table, use the drop-down menus to make the following statement correct. _ experiences the least warming effect from CO2 because it has the _ of CO2 in its atmosphere.
- A. smallest amount
- B. largest amount
- C. Mars
- D. Planet L
Correct Answer & Rationale
Correct Answer: A,C
The statement highlights that Mars experiences the least warming effect from CO2 due to its atmospheric composition. Mars has a small amount of CO2 compared to other planets, which limits its greenhouse effect and consequently its warming. Option B, "largest amount," is incorrect as it contradicts the premise that a larger CO2 presence would lead to more warming. Option D, "Planet L," is not a recognized celestial body in this context and does not provide relevant information regarding CO2 levels. Thus, the combination of Mars with the smallest amount of CO2 accurately reflects the relationship between atmospheric composition and warming effects.
The statement highlights that Mars experiences the least warming effect from CO2 due to its atmospheric composition. Mars has a small amount of CO2 compared to other planets, which limits its greenhouse effect and consequently its warming. Option B, "largest amount," is incorrect as it contradicts the premise that a larger CO2 presence would lead to more warming. Option D, "Planet L," is not a recognized celestial body in this context and does not provide relevant information regarding CO2 levels. Thus, the combination of Mars with the smallest amount of CO2 accurately reflects the relationship between atmospheric composition and warming effects.
Placing solid ammonium nitrate, NH4NO3, in a container of water causes an endothermic reaction. The result is ammonium hydroxide, NH4OH, and nitric acid, HNO3. Which diagram shows the correct equation for the reaction?
- A. NH4OH + HNO3 → NH4NO3 + H2O + energy
- B. NH4NO3 + H2O + energy → NH4OH + HNO3
- C. NH4NO3 + H2O → NH4OH + HNO3 + energy
- D. NH4OH + HNO3 + energy → NH4NO3 + H2O
Correct Answer & Rationale
Correct Answer: B
The reaction involving solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Option B accurately reflects this by showing ammonium nitrate and water reacting to form ammonium hydroxide and nitric acid while requiring energy input, consistent with the endothermic nature of the process. Option A incorrectly suggests that energy is released, which contradicts the reaction's endothermic characteristic. Option C also misrepresents the energy aspect, implying that energy is produced, which is not the case. Option D similarly indicates that energy is released, misaligning with the reaction's true nature.
The reaction involving solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Option B accurately reflects this by showing ammonium nitrate and water reacting to form ammonium hydroxide and nitric acid while requiring energy input, consistent with the endothermic nature of the process. Option A incorrectly suggests that energy is released, which contradicts the reaction's endothermic characteristic. Option C also misrepresents the energy aspect, implying that energy is produced, which is not the case. Option D similarly indicates that energy is released, misaligning with the reaction's true nature.
Which statement correctly summarizes this information?
- A. Hemochromatosis is a dominant genetic disease caused by a single mutation.
- B. Hemochromatosis is a recessive genetic disease, but is caused by a lack of iron.
- C. Hemochromatosis is a recessive genetic disease, but the expression differs in individuals.
- D. Hemochromatosis is a dominant genetic disease that can be caused by several different alleles.
Correct Answer & Rationale
Correct Answer: C
Hemochromatosis is indeed a recessive genetic disorder, meaning that two copies of the mutated gene are typically required for the disease to manifest. Option A incorrectly categorizes it as a dominant disease, which does not align with its genetic inheritance pattern. Option B misstates the condition, as hemochromatosis is characterized by iron overload, not a deficiency. Option D also misrepresents the disease; while there are different alleles involved, hemochromatosis is primarily recessive, not dominant, making option C the most accurate summary of the information.
Hemochromatosis is indeed a recessive genetic disorder, meaning that two copies of the mutated gene are typically required for the disease to manifest. Option A incorrectly categorizes it as a dominant disease, which does not align with its genetic inheritance pattern. Option B misstates the condition, as hemochromatosis is characterized by iron overload, not a deficiency. Option D also misrepresents the disease; while there are different alleles involved, hemochromatosis is primarily recessive, not dominant, making option C the most accurate summary of the information.