Various species of birds from the genus Agaporis possess differing behaviors. These behaviors
differ in a way that can be used to infer how the species are related and how they have evolved
over time.
For example, the three lovebird species considered to be the most primitive all build simple nests
in preexisting cavities. The three middle species all build elaborate nests with tops, and one even
digs out a cavity for the nest. The four modern species build cuplike nests: These nests are more
complex than those built by the primitive species but less complex than those built by the middle
species.
William Dilger conducted an investigation to show that the nest-building behaviors of these birds
were genetic rather than learned behaviors. In his investigation, Dilger used two different species
of lovebird that readily mate with each other-Fischer's lovebird and the peach-faced lovebird.
Fischer's lovebird is a species of moder lovebird while the peach-faced lovebird is a slightly more
primitive species.
Fischer's lovebird carries small pieces of nesting material in its beak. The small size of the nesting
material is the reason for the simpler cuplike nests of Fischer's lovebird. The peach-faced lovebird
cuts long strips of nesting material, which is then tucked into the feathers on the back of the bird.
These long strips of nesting material will often fall out of the bird's feathers. However, the long
strips of material allow the peach-faced lovebird to build an elaborate nest.
The hybrid offspring of these two species has difficulty building nests. The hybrid offspring will cut
long strips of material like its peach-faced parent. However, the hybrid offspring will attempt to
carry the material in its beak and have difficulty flying. If it does attempt to place the material in
the feathers of its back, the material falls out because the bird does not properly secure the
material in its feathers.
Which hypothesis was Dilger testing in his experiment?
- A. If hybrid offspring have a mixture of behaviors, then the species are within the same genus.
- B. If a hybrid offspring carries nesting material in its beak, then it is more closely related to modern lovebirds.
- C. If behavior in lovebirds is genetic, then a hybrid offspring will display a mixture of behaviors.
- D. If lovebird species can interbreed, then a hybrid offspring will have a mixture of behaviors.
Correct Answer & Rationale
Correct Answer: C
Dilger aimed to investigate the genetic basis of behavior in lovebirds, specifically focusing on whether hybrid offspring exhibit a blend of behaviors from their parent species. Option C accurately reflects this hypothesis, linking genetic inheritance to behavioral traits in hybrids. Option A incorrectly connects hybrid behavior to taxonomic classification, which is not the primary focus of Dilger’s study. Option B suggests a direct relationship between nesting material behavior and modern lovebirds, overlooking the broader genetic implications. Option D, while related to interbreeding, does not emphasize the genetic aspect of behavior, which is central to Dilger's hypothesis.
Dilger aimed to investigate the genetic basis of behavior in lovebirds, specifically focusing on whether hybrid offspring exhibit a blend of behaviors from their parent species. Option C accurately reflects this hypothesis, linking genetic inheritance to behavioral traits in hybrids. Option A incorrectly connects hybrid behavior to taxonomic classification, which is not the primary focus of Dilger’s study. Option B suggests a direct relationship between nesting material behavior and modern lovebirds, overlooking the broader genetic implications. Option D, while related to interbreeding, does not emphasize the genetic aspect of behavior, which is central to Dilger's hypothesis.
Other Related Questions
which sentence describes a difference between artificial selection and natural selection?
- A. In natural selection, variation is heritable; in artificial selection, variation is not heritable.
- B. In natural selection, there is differential reproduction; in artificial selection, there is not differential reproduction.
- C. In natural selection, there is variation within the population of organisms; in artificial selection, there is no variation within the population or organisms.
- D. In natural selection, reproductive success is driven by naturally occurring processes; in artificial selection, reproductive success is driven by human-imposed processes.
Correct Answer & Rationale
Correct Answer: D
Natural selection occurs through naturally occurring processes where organisms with advantageous traits are more likely to survive and reproduce, leading to evolutionary change over time. In contrast, artificial selection involves human intervention, where specific traits are chosen for breeding based on human preferences. Option A is incorrect; both types of selection involve heritable variation. Option B misrepresents artificial selection, which also involves differential reproduction based on selected traits. Option C is inaccurate as artificial selection can still involve variation within the chosen traits. Thus, option D accurately highlights the fundamental distinction between the two processes.
Natural selection occurs through naturally occurring processes where organisms with advantageous traits are more likely to survive and reproduce, leading to evolutionary change over time. In contrast, artificial selection involves human intervention, where specific traits are chosen for breeding based on human preferences. Option A is incorrect; both types of selection involve heritable variation. Option B misrepresents artificial selection, which also involves differential reproduction based on selected traits. Option C is inaccurate as artificial selection can still involve variation within the chosen traits. Thus, option D accurately highlights the fundamental distinction between the two processes.
Which statement from the passage refutes Lavoisier's idea that heat is a fluid that leaves a hot substance and travels to a colder substance?
- A. He also found the brass filings produced from the drilling process contained enough heat to boil water while retaining their weight.
- B. James Joule discovered that heat could be produced by moving a wire through a magnetic field.
- C. Lavoisier demonstrated that oxygen was required for combustion.
- D. Count Rumford observed that the process of boring out cannons from brass cylinders continuously produced heat.
Correct Answer & Rationale
Correct Answer: A
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Which instruction would be most appropriate for step 2 of the procedure?
- A. Provide both group A and group B participants with a daily magnesium supplement.
- B. Provide group A participants with a daily magnesium supplement and provide group B participants with a daily supplement that contains only inactive ingredients.
- C. Provide group A participants with a high-magnesium supplement and group B participants with a low-magnesium supplement...
- D. Provide both group A and group B participants with guidelines about which foods they should consume.
Correct Answer & Rationale
Correct Answer: B
Option B is the most appropriate instruction for step 2 as it establishes a clear experimental control. By giving group A a magnesium supplement and group B an inactive placebo, it allows for a direct comparison of the effects of magnesium on the participants. Option A is incorrect because it does not create a control group; both groups would receive magnesium, making it impossible to determine its specific effects. Option C is flawed as it introduces an additional variable by varying the magnesium levels between groups, complicating the results. Option D fails to provide a direct intervention, which is essential for assessing the impact of magnesium supplementation.
Option B is the most appropriate instruction for step 2 as it establishes a clear experimental control. By giving group A a magnesium supplement and group B an inactive placebo, it allows for a direct comparison of the effects of magnesium on the participants. Option A is incorrect because it does not create a control group; both groups would receive magnesium, making it impossible to determine its specific effects. Option C is flawed as it introduces an additional variable by varying the magnesium levels between groups, complicating the results. Option D fails to provide a direct intervention, which is essential for assessing the impact of magnesium supplementation.
Scientists have estimated the mass of the object that caused the Tunguska Event at 5 x 10^12 kilograms (kg). If the object was a comet in which 1% of total mass was ammonia, how much ammonia did the comet contain? kg
Correct Answer & Rationale
Correct Answer: 5x10^10
To find the mass of ammonia in the comet, we calculate 1% of the total mass (5 x 10^12 kg). This is done by multiplying the total mass by 0.01: 5 x 10^12 kg × 0.01 = 5 x 10^10 kg. This calculation confirms that the comet contained 5 x 10^10 kg of ammonia. Other options may result from incorrect calculations, such as misunderstanding the percentage or misapplying the multiplication. For instance, using 0.1 instead of 0.01 would yield an answer ten times larger, while failing to convert the percentage to a decimal would also lead to an incorrect figure.
To find the mass of ammonia in the comet, we calculate 1% of the total mass (5 x 10^12 kg). This is done by multiplying the total mass by 0.01: 5 x 10^12 kg × 0.01 = 5 x 10^10 kg. This calculation confirms that the comet contained 5 x 10^10 kg of ammonia. Other options may result from incorrect calculations, such as misunderstanding the percentage or misapplying the multiplication. For instance, using 0.1 instead of 0.01 would yield an answer ten times larger, while failing to convert the percentage to a decimal would also lead to an incorrect figure.