hiset math practice test

A widely recognized high school equivalency exam, similar to the GED, designed for individuals who didn’t complete high school but want to earn a diploma-equivalent credential.

What is the sum of the two polynomials? 4x² + 3x + 5 + x² + 6x - 3?
  • A. 4x² + 9x + 2
  • B. 5x² + 9x + 2
  • C. 5x² + 9x + 8
  • D. 4x² + 9x² + 2
  • E. 5x² + 9x² + 8
Correct Answer & Rationale
Correct Answer: B

To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.

Other Related Questions

What are the solutions to (x-2)(x+4) = 0?
  • A. -4 and 2
  • B. -3 and 1
  • C. -2 and 4
  • D. -1 and 1
  • E. -1 and 3
Correct Answer & Rationale
Correct Answer: A

To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
Each month, the charge for a lawn care service consists of a flat fee of $25, plus $5 each time the lawn is mowed. Which of the following equations represents the total monthly charge, A(m), in dollars, as a function of the number of times the lawn is mowed, m?
  • A. A(m) = 5(25)m
  • B. A(m) = 5 + 25m
  • C. A(m) = 5m + 25
  • D. A(m) = 25m + 5
  • E. A(m) = m + 5 + 25
Correct Answer & Rationale
Correct Answer: C

The equation A(m) = 5m + 25 accurately represents the total monthly charge for the lawn care service. Here, the term 5m accounts for the $5 charge per mowing, and the flat fee of $25 is added to this total. Option A incorrectly multiplies the flat fee by the number of mowings, which misrepresents the structure of the charges. Option B misplaces the flat fee, summing it with the number of mowings instead of adding it as a fixed cost. Option D incorrectly places the flat fee as a coefficient of m, which distorts the relationship. Option E combines the charges incorrectly, failing to clearly separate the flat fee from the per-mow charge.
Which of the following expressions is equivalent to: 1200 × (5 × 10⁷)?
  • A. 12×10¹⁰
  • B. 6.0×10¹⁰
  • C. 6.0×10¹¹
  • D. 7.2×10¹³
  • E. 9.4×10¹⁴
Correct Answer & Rationale
Correct Answer: B

To find an equivalent expression for \( 1200 \times (5 \times 10^n) \), we first simplify \( 1200 \) as \( 1.2 \times 10^3 \). Thus, the expression becomes \( 1.2 \times 10^3 \times 5 \times 10^n = 6.0 \times 10^{3+n} \). Option A incorrectly simplifies the coefficient and exponent. Option C miscalculates the exponent, not aligning with the original multiplication. Option D has an incorrect coefficient and exponent combination. Option E also miscalculates the coefficient and exponent. Therefore, only option B accurately reflects the simplified expression.
One online movie-streaming service costs $8 per month and charges $1.50 per movie. A second service costs $2 per month and charges $2 per movie. For what number of movies per month is the monthly cost of both services the same?
  • A. 3
  • B. 6
  • C. 5
  • D. 12
  • E. 20
Correct Answer & Rationale
Correct Answer: D

To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.