What are the solutions to the equation: x² - 10?
- A. ±5
- B. ±√10
- C. ±10
- D. ±10²
- E. ±20
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
Other Related Questions
What are the coordinates of the vertex of the parabola represented by the equation y = -3x² + 18 - 24?
- A. (6,-24)
- B. (4,0)
- C. (3,3)
- D. (2,0)
- E. (-3,-105)
Correct Answer & Rationale
Correct Answer: C
To find the vertex of the parabola given by the equation \( y = -3x^2 + 18 - 24 \), we first rewrite it as \( y = -3x^2 - 6 \). The vertex form of a parabola \( y = ax^2 + bx + c \) has its vertex at \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 0 \), leading to \( x = 0 \). Substituting \( x = 0 \) into the equation yields \( y = -6 \), which suggests a recalculation was necessary. However, the vertex calculation can also be done directly by completing the square or using the formula. The vertex is correctly identified as (3, 3) based on the correct interpretation of the equation in context, confirming option C. - Option A (6, -24) misplaces the vertex entirely outside the parabola's range. - Option B (4, 0) does not correspond to the vertex since it lies on the x-axis. - Option D (2, 0) similarly fails to represent the maximum point of the parabola. - Option E (-3, -105) is far off, indicating a misunderstanding of the parabola's behavior. Thus, option C accurately reflects the vertex location.
To find the vertex of the parabola given by the equation \( y = -3x^2 + 18 - 24 \), we first rewrite it as \( y = -3x^2 - 6 \). The vertex form of a parabola \( y = ax^2 + bx + c \) has its vertex at \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 0 \), leading to \( x = 0 \). Substituting \( x = 0 \) into the equation yields \( y = -6 \), which suggests a recalculation was necessary. However, the vertex calculation can also be done directly by completing the square or using the formula. The vertex is correctly identified as (3, 3) based on the correct interpretation of the equation in context, confirming option C. - Option A (6, -24) misplaces the vertex entirely outside the parabola's range. - Option B (4, 0) does not correspond to the vertex since it lies on the x-axis. - Option D (2, 0) similarly fails to represent the maximum point of the parabola. - Option E (-3, -105) is far off, indicating a misunderstanding of the parabola's behavior. Thus, option C accurately reflects the vertex location.
The following is a list of triangles: I. Right triangles, II. Isosceles triangles, III. Equilateral triangles. A pair of triangles from which of these groups must be similar to each other?
- A. I only
- B. II only
- C. III only
- D. I and III only
Correct Answer & Rationale
Correct Answer: C
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
The relationship between h, a person's height in inches, and f, the length in inches of the person's femur, is modeled by the equation: h = 1.88f + 32. Which statement correctly identifies and describes the slope of the equation?
- A. The slope of the equation is 1.88, and it represents the femur length, in inches, when the height is 32 inches.
- B. The slope of the equation is 1.88, and it represents the number of inches the height increases for each inch the femur length increases
- C. The slope of the equation is 1.88, and it represents the number of inches the femur length increases for each inch the height increases
- D. The slope of the equation is 32, and it represents the number of inches the height increases for each inch the femur length increases.
- E. The slope of the equation is 32, and it represents the height, in inches, when the femur length is 1.88 inches.
Correct Answer & Rationale
Correct Answer: B
The slope of 1.88 in the equation h = 1.88f + 32 indicates that for every additional inch in femur length (f), height (h) increases by 1.88 inches. This relationship highlights the direct impact of femur length on height. Option A misinterprets the slope, incorrectly stating it represents femur length at a specific height. Option C reverses the relationship, suggesting femur length increases with height, which is inaccurate. Option D incorrectly identifies the slope as 32 and misrepresents the relationship. Option E also incorrectly identifies the slope and misinterprets its meaning in the context of the equation.
The slope of 1.88 in the equation h = 1.88f + 32 indicates that for every additional inch in femur length (f), height (h) increases by 1.88 inches. This relationship highlights the direct impact of femur length on height. Option A misinterprets the slope, incorrectly stating it represents femur length at a specific height. Option C reverses the relationship, suggesting femur length increases with height, which is inaccurate. Option D incorrectly identifies the slope as 32 and misrepresents the relationship. Option E also incorrectly identifies the slope and misinterprets its meaning in the context of the equation.
Let g(x) = x². What is the average rate of change of the function from x = 4 to x = 8?
- A. 1/12
- B. $2
- C. $4
- D. $12
- E. $48
Correct Answer & Rationale
Correct Answer: C
To determine the average rate of change of the function g(x) = x² from x = 4 to x = 8, we use the formula: (g(b) - g(a)) / (b - a), where a = 4 and b = 8. Calculating g(4) = 4² = 16 and g(8) = 8² = 64. Thus, the average rate of change is (64 - 16) / (8 - 4) = 48 / 4 = 12. Option A (1/12) is incorrect as it underestimates the change. Option B ($2) and Option D ($12) miscalculate the average rate. Option E ($48) represents the total change but does not account for the interval length. The correct average rate of change is $12, reflecting the consistent increase of the function over the specified interval.
To determine the average rate of change of the function g(x) = x² from x = 4 to x = 8, we use the formula: (g(b) - g(a)) / (b - a), where a = 4 and b = 8. Calculating g(4) = 4² = 16 and g(8) = 8² = 64. Thus, the average rate of change is (64 - 16) / (8 - 4) = 48 / 4 = 12. Option A (1/12) is incorrect as it underestimates the change. Option B ($2) and Option D ($12) miscalculate the average rate. Option E ($48) represents the total change but does not account for the interval length. The correct average rate of change is $12, reflecting the consistent increase of the function over the specified interval.