What are the solutions to (x-2)(x+4) = 0?
- A. -4 and 2
- B. -3 and 1
- C. -2 and 4
- D. -1 and 1
- E. -1 and 3
Correct Answer & Rationale
Correct Answer: A
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
Other Related Questions
Which of the following expressions is equivalent to: 6x³ + 7x² + 1/x?
- A. 63 + 72 + 1/x
- B. 63 + 72 + 1
- C. 6x² + 7x + 1/x
- D. 6x² + 7x + 1
- E. 6x² + 7x² + 1
Correct Answer & Rationale
Correct Answer: C
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
What is the product of the two polynomials: (x - 5)(x² - 3x + 6)?
- A. x³ - 8x² + 21x - 30
- B. x³ - 8x² - 21x - 30
- C. x³ - 8x² - 9x - 30
- D. x³ + 8x² + 21x + 30
- E. x³ + 8x² - 9x + 30
Correct Answer & Rationale
Correct Answer: A
To find the product of the polynomials (x - 5)(x² - 3x + 6), we apply the distributive property (FOIL method). 1. Multiply x by each term in the second polynomial: - x * x² = x³ - x * (-3x) = -3x² - x * 6 = 6x 2. Multiply -5 by each term in the second polynomial: - -5 * x² = -5x² - -5 * (-3x) = 15x - -5 * 6 = -30 Combining these results yields: x³ + (-3x² - 5x²) + (6x + 15x) - 30 = x³ - 8x² + 21x - 30. Option A matches this result. Options B and C have incorrect signs for the x terms. Option D has incorrect signs for all terms, and option E has incorrect signs for the x² and x terms. Thus, only option A accurately represents the product of the polynomials.
To find the product of the polynomials (x - 5)(x² - 3x + 6), we apply the distributive property (FOIL method). 1. Multiply x by each term in the second polynomial: - x * x² = x³ - x * (-3x) = -3x² - x * 6 = 6x 2. Multiply -5 by each term in the second polynomial: - -5 * x² = -5x² - -5 * (-3x) = 15x - -5 * 6 = -30 Combining these results yields: x³ + (-3x² - 5x²) + (6x + 15x) - 30 = x³ - 8x² + 21x - 30. Option A matches this result. Options B and C have incorrect signs for the x terms. Option D has incorrect signs for all terms, and option E has incorrect signs for the x² and x terms. Thus, only option A accurately represents the product of the polynomials.
One online movie-streaming service costs $8 per month and charges $1.50 per movie. A second service costs $2 per month and charges $2 per movie. For what number of movies per month is the monthly cost of both services the same?
- A. 3
- B. 6
- C. 5
- D. 12
- E. 20
Correct Answer & Rationale
Correct Answer: D
To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
Which of the following equations does not represent y as a function of x in the standard (x, y) coordinate plane?
- A. y = x
- B. y = x + 2
- C. y = x² + 2
- D. x = y + 2
- E. x = y² + 2
Correct Answer & Rationale
Correct Answer: E
Option E, \( x = y^2 + 2 \), does not represent \( y \) as a function of \( x \) because it can yield multiple \( y \) values for a single \( x \) value. For example, when \( x = 6 \), \( y \) can be either 2 or -2, violating the definition of a function. In contrast, options A, B, and C express \( y \) explicitly in terms of \( x \), allowing only one output for each input. Option D, while rearranging the equation, can also be transformed into a function of \( y \) in terms of \( x \) (i.e., \( y = x - 2 \)). Thus, options A, B, C, and D all represent \( y \) as a function of \( x \).
Option E, \( x = y^2 + 2 \), does not represent \( y \) as a function of \( x \) because it can yield multiple \( y \) values for a single \( x \) value. For example, when \( x = 6 \), \( y \) can be either 2 or -2, violating the definition of a function. In contrast, options A, B, and C express \( y \) explicitly in terms of \( x \), allowing only one output for each input. Option D, while rearranging the equation, can also be transformed into a function of \( y \) in terms of \( x \) (i.e., \( y = x - 2 \)). Thus, options A, B, C, and D all represent \( y \) as a function of \( x \).