In tennis, a player has two chances to serve the ball successfully. Tamara is successful 70% of the time on her first serve. Tamara is successful 80% of the time on her second serve. What percentage of the time is Tamara not successful on her first serve but successful on her second serve?
- A. 5%
- B. 14%
- C. 24%
- D. 50%
- E. 56%
Correct Answer & Rationale
Correct Answer: B
To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.
To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.
Other Related Questions
What is the sum of the two polynomials? 4x² + 3x + 5 + x² + 6x - 3?
- A. 4x² + 9x + 2
- B. 5x² + 9x + 2
- C. 5x² + 9x + 8
- D. 4x² + 9x² + 2
- E. 5x² + 9x² + 8
Correct Answer & Rationale
Correct Answer: B
To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
Which of the following expressions is equivalent to (4x²)(5x³)?
- A. 9xâµ
- B. 9xâ¶
- C. 20xâµ
- D. 20xâ¶
- E. 20xâ¹
Correct Answer & Rationale
Correct Answer: C
To find the equivalent expression for (4x²)(5x³), multiply the coefficients (4 and 5) and add the exponents of x (2 and 3). Thus, 4 × 5 equals 20, and x² × x³ results in x^(2+3) = x⁵. This gives us 20x⁵. Option A (9x⁶) is incorrect because it miscalculates both the coefficient and the exponent. Option B (9x⁷) also miscalculates both the coefficient and exponent. Option D (20x⁶) correctly identifies the coefficient but incorrectly adds the exponents. Option E (20x¹) miscalculates the exponent entirely. Only option C accurately represents the expression as 20x⁵.
To find the equivalent expression for (4x²)(5x³), multiply the coefficients (4 and 5) and add the exponents of x (2 and 3). Thus, 4 × 5 equals 20, and x² × x³ results in x^(2+3) = x⁵. This gives us 20x⁵. Option A (9x⁶) is incorrect because it miscalculates both the coefficient and the exponent. Option B (9x⁷) also miscalculates both the coefficient and exponent. Option D (20x⁶) correctly identifies the coefficient but incorrectly adds the exponents. Option E (20x¹) miscalculates the exponent entirely. Only option C accurately represents the expression as 20x⁵.
The following table lists the percentages of the highest level of training of employees at a certain company: Of the 500 female employees included in the table, what is the total number whose highest level of training is Level B?
- A. 100
- B. 150
- C. 200
- D. 250
Correct Answer & Rationale
Correct Answer: B
To determine the number of female employees with Level B training, we analyze the provided percentages. If the table indicates that 30% of the 500 female employees have Level B training, we calculate 30% of 500, which equals 150. Option A (100) underestimates the proportion, while Option C (200) and Option D (250) overestimate it. Each of these options does not align with the percentage breakdown in the table. Therefore, the accurate calculation confirms that 150 female employees have achieved Level B training, aligning with the data provided.
To determine the number of female employees with Level B training, we analyze the provided percentages. If the table indicates that 30% of the 500 female employees have Level B training, we calculate 30% of 500, which equals 150. Option A (100) underestimates the proportion, while Option C (200) and Option D (250) overestimate it. Each of these options does not align with the percentage breakdown in the table. Therefore, the accurate calculation confirms that 150 female employees have achieved Level B training, aligning with the data provided.
Which of the following statements is true about the graphs of f(x) = x and g(x) = 3x in the standard (x, y) coordinate plane?
- A. The graphs will not intersect.
- B. The graphs will intersect only at the point (0,0).
- C. The graphs will intersect only at the point (0,1).
- D. The graphs will intersect only at the point (1,1).
- E. The graphs will intersect only at the point (3,3).
Correct Answer & Rationale
Correct Answer: D
The graphs of f(x) = x and g(x) = 3x represent two linear functions with different slopes. The first function has a slope of 1, while the second has a slope of 3. They will intersect where their outputs are equal, which occurs when x = 1, resulting in the point (1,1). Option A is incorrect as the lines, being linear, will intersect at some point. Option B is misleading; they intersect at (0,0) but also at (1,1). Option C is false because g(1) = 3, not 1. Option E is incorrect since g(3) = 9, not 3. Thus, the only valid intersection point is (1,1).
The graphs of f(x) = x and g(x) = 3x represent two linear functions with different slopes. The first function has a slope of 1, while the second has a slope of 3. They will intersect where their outputs are equal, which occurs when x = 1, resulting in the point (1,1). Option A is incorrect as the lines, being linear, will intersect at some point. Option B is misleading; they intersect at (0,0) but also at (1,1). Option C is false because g(1) = 3, not 1. Option E is incorrect since g(3) = 9, not 3. Thus, the only valid intersection point is (1,1).