What is the range of her scores?
- A. 100
- B. 120
- C. 440
- D. 2,250
Correct Answer & Rationale
Correct Answer: B
To determine the range of her scores, we subtract the lowest score from the highest score. If the highest score is 220 and the lowest is 100, the calculation is 220 - 100 = 120, which represents the range. Option A (100) misrepresents the range as it does not account for the difference between the highest and lowest scores. Option C (440) and Option D (2,250) are excessively high and do not reflect the actual spread of scores based on the provided data. Thus, 120 accurately represents the range of her scores.
To determine the range of her scores, we subtract the lowest score from the highest score. If the highest score is 220 and the lowest is 100, the calculation is 220 - 100 = 120, which represents the range. Option A (100) misrepresents the range as it does not account for the difference between the highest and lowest scores. Option C (440) and Option D (2,250) are excessively high and do not reflect the actual spread of scores based on the provided data. Thus, 120 accurately represents the range of her scores.
Other Related Questions
A playground at a mall is in the shape of a rectangle, and there is a 144 foot long fence around it. If the rectangle is 6 feet longer than it is wide, what is the width, in feet, of the rectangle?
- A. 33
- B. 39
- C. 69
- D. 75
Correct Answer & Rationale
Correct Answer: A
To find the width of the rectangle, let the width be represented as \( w \). The length, being 6 feet longer, can be expressed as \( w + 6 \). The perimeter of a rectangle is given by the formula \( P = 2(l + w) \). Here, the perimeter is 144 feet, leading to the equation \( 2(w + (w + 6)) = 144 \). Simplifying this gives \( 2(2w + 6) = 144 \), which reduces to \( 4w + 12 = 144 \), and further simplifies to \( 4w = 132 \), resulting in \( w = 33 \). Option B (39) is incorrect as it gives a perimeter of 156 feet. Option C (69) would lead to an impossible perimeter of 150 feet. Option D (75) results in a perimeter of 162 feet, which exceeds the given value. Thus, only option A satisfies all conditions, confirming the width as 33 feet.
To find the width of the rectangle, let the width be represented as \( w \). The length, being 6 feet longer, can be expressed as \( w + 6 \). The perimeter of a rectangle is given by the formula \( P = 2(l + w) \). Here, the perimeter is 144 feet, leading to the equation \( 2(w + (w + 6)) = 144 \). Simplifying this gives \( 2(2w + 6) = 144 \), which reduces to \( 4w + 12 = 144 \), and further simplifies to \( 4w = 132 \), resulting in \( w = 33 \). Option B (39) is incorrect as it gives a perimeter of 156 feet. Option C (69) would lead to an impossible perimeter of 150 feet. Option D (75) results in a perimeter of 162 feet, which exceeds the given value. Thus, only option A satisfies all conditions, confirming the width as 33 feet.
Allison drives her car at an average speed of x miles per hour for y hours and travels 150 miles. Which of the following equations represents this situation?
- A. x + y = 150
- B. xy = 150
- C. y/x = 150
- D. x/y = 150
Correct Answer & Rationale
Correct Answer: B
The relationship between speed, time, and distance is expressed by the formula: distance = speed × time. In this scenario, Allison travels 150 miles at an average speed of x miles per hour for y hours, which translates to the equation xy = 150. Option A (x + y = 150) incorrectly suggests that speed and time add up to distance, which is not accurate. Option C (y/x = 150) misrepresents the relationship by implying that the ratio of time to speed equals distance, which is incorrect. Option D (x/y = 150) also misinterprets the relationship, suggesting that the ratio of speed to time equals distance. Thus, option B correctly captures the relationship among the variables.
The relationship between speed, time, and distance is expressed by the formula: distance = speed × time. In this scenario, Allison travels 150 miles at an average speed of x miles per hour for y hours, which translates to the equation xy = 150. Option A (x + y = 150) incorrectly suggests that speed and time add up to distance, which is not accurate. Option C (y/x = 150) misrepresents the relationship by implying that the ratio of time to speed equals distance, which is incorrect. Option D (x/y = 150) also misinterprets the relationship, suggesting that the ratio of speed to time equals distance. Thus, option B correctly captures the relationship among the variables.
If a number from set M is selected at random, what is the probability that the number selected will be a factor of 12?
- A. 0.1
- B. 0.2
- C. 0.4
- D. 0.5
Correct Answer & Rationale
Correct Answer: C
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
To determine the probability that a randomly selected number from set M is a factor of 12, we first identify the factors of 12, which are 1, 2, 3, 4, 6, and 12. If set M consists of 6 numbers (1 through 6), then 4 of these (1, 2, 3, and 4) are factors of 12. Thus, the probability is 4 out of 6, simplifying to 0.4. Option A (0.1) underestimates the number of factors. Option B (0.2) suggests only 2 factors, which is incorrect. Option D (0.5) implies 3 factors, also inaccurate. Therefore, 0.4 accurately represents the proportion of factors of 12 in the set.
The expressions x - 2 and x + 3 represent the length and width of a rectangle, respectively. If the area of the rectangle is 24, what is the perimeter of the rectangle?
- A. 20
- B. 22
- C. 24
- D. 28
Correct Answer & Rationale
Correct Answer: B
To find the perimeter of the rectangle, first calculate its dimensions using the area formula. The area is given by multiplying length and width: \[ (x - 2)(x + 3) = 24 \] Expanding this, we get: \[ x^2 + x - 6 = 24 \implies x^2 + x - 30 = 0 \] Factoring yields: \[ (x - 5)(x + 6) = 0 \implies x = 5 \text{ (valid)} \text{ or } x = -6 \text{ (not valid)} \] Using \(x = 5\), the dimensions are \(3\) (length) and \(8\) (width). The perimeter is: \[ 2(3 + 8) = 22 \] Options A (20), C (24), and D (28) do not match the calculated perimeter of 22, confirming they are incorrect.
To find the perimeter of the rectangle, first calculate its dimensions using the area formula. The area is given by multiplying length and width: \[ (x - 2)(x + 3) = 24 \] Expanding this, we get: \[ x^2 + x - 6 = 24 \implies x^2 + x - 30 = 0 \] Factoring yields: \[ (x - 5)(x + 6) = 0 \implies x = 5 \text{ (valid)} \text{ or } x = -6 \text{ (not valid)} \] Using \(x = 5\), the dimensions are \(3\) (length) and \(8\) (width). The perimeter is: \[ 2(3 + 8) = 22 \] Options A (20), C (24), and D (28) do not match the calculated perimeter of 22, confirming they are incorrect.