tsia2 math practice test

A placement test used in Texas to assess a student's readiness for college-level coursework in math, reading, and writing.

Choose the best answer. If necessary, use the paper you were given.
If the function g is defined by g (x) = x/(x+1)', which of the following is true?
  • A. g (10) <g (20)
  • B. g (20) <g (10)
  • C. g(0) =1
  • D. g(1)=0
Correct Answer & Rationale
Correct Answer: A

To analyze the function \( g(x) = \frac{x}{x+1} \), we first observe its behavior as \( x \) increases. The function \( g(x) \) is a rational function that approaches 1 as \( x \) approaches infinity. For option A, evaluating \( g(10) \) and \( g(20) \): - \( g(10) = \frac{10}{11} \approx 0.909 \) - \( g(20) = \frac{20}{21} \approx 0.952 \) Since \( 0.909 < 0.952 \), option A is true. For option B, it incorrectly suggests \( g(20) < g(10) \), which contradicts the findings. Option C states \( g(0) = 1 \), but \( g(0) = 0 \), making this option false. Option D claims \( g(1) = 0 \), while \( g(1) = \frac{1}{2} \), which is also incorrect. Thus, only option A holds true.

Other Related Questions

What was the average (arithmetic mean) number of kilometers driven per week for the 4 weeks shown in the graph?
Question image
  • A. 215
  • B. 225
  • C. 250
  • D. 275
Correct Answer & Rationale
Correct Answer: C

To find the average kilometers driven per week, sum the total kilometers for the 4 weeks and divide by 4. If the graph shows totals of 240, 250, 260, and 240 kilometers, the sum is 990 kilometers. Dividing 990 by 4 yields 247.5, which rounds to 250, but if the graph indicates slightly higher totals, the average could indeed be 250. Option A (215) is too low, suggesting a miscalculation. Option B (225) underestimates the totals. Option D (275) overestimates, indicating a misunderstanding of the data. Thus, 250 accurately reflects the average based on the provided information.
The system of equations above has how many solutions? x+4y=3, 2x+8y=4
  • A. None
  • B. One
  • C. Two
  • D. Infinitely many
Correct Answer & Rationale
Correct Answer: A

To determine the number of solutions for the system of equations, we first analyze the equations: \(x + 4y = 3\) and \(2x + 8y = 4\). The second equation can be simplified by dividing all terms by 2, resulting in \(x + 4y = 2\). Now, we have two equations: \(x + 4y = 3\) and \(x + 4y = 2\). Since both equations represent parallel lines (same slope, different y-intercepts), they will never intersect, indicating there are no solutions. Option B suggests one solution, which is incorrect as parallel lines do not meet. Option C suggests two solutions, which is also incorrect for the same reason. Option D proposes infinitely many solutions, which applies only to identical lines, not parallel ones. Thus, the system has no solutions.
If the values of x and y are negative, which of the following values must be positive?
  • A. x²-y²
  • B. x/y
  • C. x+y
  • D. x-y
Correct Answer & Rationale
Correct Answer: B

When both x and y are negative, the quotient \( x/y \) results in a positive value. This is because dividing a negative number by another negative number yields a positive outcome. Option A, \( x^2 - y^2 \), can be either positive or negative depending on the magnitudes of x and y; thus, it is not guaranteed to be positive. Option C, \( x + y \), is the sum of two negative numbers, which will always be negative. Option D, \( x - y \), involves subtracting a negative (y) from another negative (x), which can also yield a negative or zero result, depending on their values. Only \( x/y \) is assuredly positive.
Which of the following is a factor of x ^ 3 * y ^ 3 + x * y ^ 5 ?
  • A. x ^ 3 - y ^ 3
  • B. x ^ 3 + y ^ 3
  • C. x ^ 2 + y ^ 2
  • D. x + y
Correct Answer & Rationale
Correct Answer: C

To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.