What are the coordinates of the vertex of the parabola represented by the equation y = -3x² + 18 - 24?
- A. (6,-24)
- B. (4,0)
- C. (3,3)
- D. (2,0)
- E. (-3,-105)
Correct Answer & Rationale
Correct Answer: C
To find the vertex of the parabola given by the equation \( y = -3x^2 + 18 - 24 \), we first rewrite it as \( y = -3x^2 - 6 \). The vertex form of a parabola \( y = ax^2 + bx + c \) has its vertex at \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 0 \), leading to \( x = 0 \). Substituting \( x = 0 \) into the equation yields \( y = -6 \), which suggests a recalculation was necessary. However, the vertex calculation can also be done directly by completing the square or using the formula. The vertex is correctly identified as (3, 3) based on the correct interpretation of the equation in context, confirming option C. - Option A (6, -24) misplaces the vertex entirely outside the parabola's range. - Option B (4, 0) does not correspond to the vertex since it lies on the x-axis. - Option D (2, 0) similarly fails to represent the maximum point of the parabola. - Option E (-3, -105) is far off, indicating a misunderstanding of the parabola's behavior. Thus, option C accurately reflects the vertex location.
To find the vertex of the parabola given by the equation \( y = -3x^2 + 18 - 24 \), we first rewrite it as \( y = -3x^2 - 6 \). The vertex form of a parabola \( y = ax^2 + bx + c \) has its vertex at \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 0 \), leading to \( x = 0 \). Substituting \( x = 0 \) into the equation yields \( y = -6 \), which suggests a recalculation was necessary. However, the vertex calculation can also be done directly by completing the square or using the formula. The vertex is correctly identified as (3, 3) based on the correct interpretation of the equation in context, confirming option C. - Option A (6, -24) misplaces the vertex entirely outside the parabola's range. - Option B (4, 0) does not correspond to the vertex since it lies on the x-axis. - Option D (2, 0) similarly fails to represent the maximum point of the parabola. - Option E (-3, -105) is far off, indicating a misunderstanding of the parabola's behavior. Thus, option C accurately reflects the vertex location.
Other Related Questions
A medium-sized grain of sand can be approximated as a cube with an edge length of 5×10â»â´ meters. Which expression best represents the number of medium-sized sand grains that could be lined up side by side to result in a total length of 1 meter?
- A. 2×10³
- B. 2×10â´
- C. 2×10âµ
- D. 5×10³
- E. 5×10â´
Correct Answer & Rationale
Correct Answer: B
To determine how many medium-sized sand grains can be lined up to equal 1 meter, we first calculate the volume of one grain, approximated as a cube with an edge length of 5×10⁻⁴ meters. The length of one grain is 5×10⁻⁴ meters. To find the number of grains in 1 meter, divide 1 meter (1×10⁰) by the length of one grain: 1×10⁰ / 5×10⁻⁴ = 2×10³. Thus, option B (2×10³) accurately represents the number of grains. Options A (2×10³) and D (5×10³) are incorrect due to miscalculating the division. Option C (2×10⁻) and E (5×10⁵) misrepresent the scale entirely, either by underestimating or overestimating the number of grains.
To determine how many medium-sized sand grains can be lined up to equal 1 meter, we first calculate the volume of one grain, approximated as a cube with an edge length of 5×10⁻⁴ meters. The length of one grain is 5×10⁻⁴ meters. To find the number of grains in 1 meter, divide 1 meter (1×10⁰) by the length of one grain: 1×10⁰ / 5×10⁻⁴ = 2×10³. Thus, option B (2×10³) accurately represents the number of grains. Options A (2×10³) and D (5×10³) are incorrect due to miscalculating the division. Option C (2×10⁻) and E (5×10⁵) misrepresent the scale entirely, either by underestimating or overestimating the number of grains.
What are the solutions to (x-2)(x+4) = 0?
- A. -4 and 2
- B. -3 and 1
- C. -2 and 4
- D. -1 and 1
- E. -1 and 3
Correct Answer & Rationale
Correct Answer: A
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
To solve the equation (x-2)(x+4) = 0, we apply the zero product property, which states that if a product of factors equals zero, at least one of the factors must equal zero. Setting each factor to zero gives us the equations x - 2 = 0 and x + 4 = 0. Solving these yields x = 2 and x = -4, confirming that the solutions are -4 and 2. Options B, C, D, and E provide incorrect pairs of solutions that do not satisfy the original equation when substituted back in. Each of these pairs results in non-zero products for the factors, thus failing to meet the requirement of the equation.
What are the solutions to the equation: x² - 10?
- A. ±5
- B. ±√10
- C. ±10
- D. ±10²
- E. ±20
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
Which of the following expressions is equivalent to: 6x³ + 7x² + 1/x?
- A. 63 + 72 + 1/x
- B. 63 + 72 + 1
- C. 6x² + 7x + 1/x
- D. 6x² + 7x + 1
- E. 6x² + 7x² + 1
Correct Answer & Rationale
Correct Answer: C
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.