Mallory loaded 200 digital pictures into a digital picture frame. 78 are pictures of family members, 26 are pictures of pets, the rest are pictures of friends. The frame displays one picture every 10 seconds. Which value is closest to the probability that the next picture the frame displays will be a picture of a friend?
- A. 0.33
- B. 0.43
- C. 0.48
- D. 0.52
- E. 0.96
Correct Answer & Rationale
Correct Answer: C
To find the probability that the next picture displayed is of a friend, first calculate the total number of friend pictures. There are 200 total pictures, with 78 family and 26 pet pictures, leaving 200 - 78 - 26 = 96 pictures of friends. The probability is then the number of friend pictures divided by the total: 96/200 = 0.48. Option A (0.33) underestimates the proportion of friend pictures. Option B (0.43) is also lower than the calculated probability. Option D (0.52) slightly overestimates it, and option E (0.96) is far too high, misrepresenting the actual count. Thus, 0.48 accurately reflects the likelihood of displaying a friend picture next.
To find the probability that the next picture displayed is of a friend, first calculate the total number of friend pictures. There are 200 total pictures, with 78 family and 26 pet pictures, leaving 200 - 78 - 26 = 96 pictures of friends. The probability is then the number of friend pictures divided by the total: 96/200 = 0.48. Option A (0.33) underestimates the proportion of friend pictures. Option B (0.43) is also lower than the calculated probability. Option D (0.52) slightly overestimates it, and option E (0.96) is far too high, misrepresenting the actual count. Thus, 0.48 accurately reflects the likelihood of displaying a friend picture next.
Other Related Questions
Which of the following equations does not represent y as a function of x in the standard (x, y) coordinate plane?
- A. y = x
- B. y = x + 2
- C. y = x² + 2
- D. x = y + 2
- E. x = y² + 2
Correct Answer & Rationale
Correct Answer: E
Option E, \( x = y^2 + 2 \), does not represent \( y \) as a function of \( x \) because it can yield multiple \( y \) values for a single \( x \) value. For example, when \( x = 6 \), \( y \) can be either 2 or -2, violating the definition of a function. In contrast, options A, B, and C express \( y \) explicitly in terms of \( x \), allowing only one output for each input. Option D, while rearranging the equation, can also be transformed into a function of \( y \) in terms of \( x \) (i.e., \( y = x - 2 \)). Thus, options A, B, C, and D all represent \( y \) as a function of \( x \).
Option E, \( x = y^2 + 2 \), does not represent \( y \) as a function of \( x \) because it can yield multiple \( y \) values for a single \( x \) value. For example, when \( x = 6 \), \( y \) can be either 2 or -2, violating the definition of a function. In contrast, options A, B, and C express \( y \) explicitly in terms of \( x \), allowing only one output for each input. Option D, while rearranging the equation, can also be transformed into a function of \( y \) in terms of \( x \) (i.e., \( y = x - 2 \)). Thus, options A, B, C, and D all represent \( y \) as a function of \( x \).
A campground rents canoes for either $20 per day or $4 per hour. For what number or numbers of hours, h, is it more expensive to rent a canoe at the daily rate than at the hourly rate?
- A. h = 5
- B. h >= 25
- C. h > 5
- D. h < 5
- E. h ≤ 5
Correct Answer & Rationale
Correct Answer: C
To determine when renting a canoe at the daily rate exceeds the hourly rate, we compare the costs. The daily rate is $20, while the hourly rate is $4 per hour. Setting up the inequality, we have: \[ 20 > 4h \] Dividing both sides by 4 gives: \[ 5 > h \] This means that renting for more than 5 hours makes the daily rate more economical. Option A (h = 5) is incorrect since at 5 hours, both rates are equal. Option B (h ≥ 25) is incorrect because it's not relevant to the threshold we calculated. Option D (h < 5) suggests a scenario where the daily rate is not more expensive, which contradicts our findings. Option E (h ≤ 5) includes values where the rates are equal or less, which doesn't satisfy the condition.
To determine when renting a canoe at the daily rate exceeds the hourly rate, we compare the costs. The daily rate is $20, while the hourly rate is $4 per hour. Setting up the inequality, we have: \[ 20 > 4h \] Dividing both sides by 4 gives: \[ 5 > h \] This means that renting for more than 5 hours makes the daily rate more economical. Option A (h = 5) is incorrect since at 5 hours, both rates are equal. Option B (h ≥ 25) is incorrect because it's not relevant to the threshold we calculated. Option D (h < 5) suggests a scenario where the daily rate is not more expensive, which contradicts our findings. Option E (h ≤ 5) includes values where the rates are equal or less, which doesn't satisfy the condition.
Isabel earns $15.80 per hour for the first 8 hours she works each day. She earns 1.5 times her hourly rate for all time after the first 8 hours. How much does Isabel earn on a day when she works 8.5 hours?
- A. 126.4
- B. 138.25
- C. 189.6
- D. 201.45
- E. 237
Correct Answer & Rationale
Correct Answer: B
To determine Isabel's earnings for an 8.5-hour workday, first calculate her earnings for the first 8 hours at $15.80 per hour, which totals $126.40 (8 hours × $15.80/hour). For the additional 0.5 hours, she earns 1.5 times her hourly rate, which is $23.70 (1.5 × $15.80). Therefore, for the extra half hour, she earns $11.85 (0.5 hours × $23.70/hour). Adding these amounts together gives $138.25 ($126.40 + $11.85). Option A ($126.40) only accounts for the first 8 hours. Option C ($189.60) incorrectly assumes full-time pay without considering the overtime rate. Option D ($201.45) miscalculates the overtime pay, while Option E ($237) overestimates by not applying the correct hourly rates.
To determine Isabel's earnings for an 8.5-hour workday, first calculate her earnings for the first 8 hours at $15.80 per hour, which totals $126.40 (8 hours × $15.80/hour). For the additional 0.5 hours, she earns 1.5 times her hourly rate, which is $23.70 (1.5 × $15.80). Therefore, for the extra half hour, she earns $11.85 (0.5 hours × $23.70/hour). Adding these amounts together gives $138.25 ($126.40 + $11.85). Option A ($126.40) only accounts for the first 8 hours. Option C ($189.60) incorrectly assumes full-time pay without considering the overtime rate. Option D ($201.45) miscalculates the overtime pay, while Option E ($237) overestimates by not applying the correct hourly rates.
How many solutions does the equation 3x + 9 = 3x - 12 have?
- B. 1
- C. 2
- D. 3
- E. Infinitely many
Correct Answer & Rationale
Correct Answer: A
To determine the number of solutions for the equation 3x + 9 = 3x - 12, we can simplify both sides. Subtracting 3x from each side results in 9 = -12, which is a false statement. Since the equation leads to a contradiction, it indicates that there are no values of x that can satisfy it. Option B (1 solution) suggests a single value exists, which is incorrect. Option C (2 solutions) and D (3 solutions) imply multiple valid values, which is also false. Option E (infinitely many solutions) suggests that any x would satisfy the equation, which is not true given the contradiction. Thus, the equation has no solutions.
To determine the number of solutions for the equation 3x + 9 = 3x - 12, we can simplify both sides. Subtracting 3x from each side results in 9 = -12, which is a false statement. Since the equation leads to a contradiction, it indicates that there are no values of x that can satisfy it. Option B (1 solution) suggests a single value exists, which is incorrect. Option C (2 solutions) and D (3 solutions) imply multiple valid values, which is also false. Option E (infinitely many solutions) suggests that any x would satisfy the equation, which is not true given the contradiction. Thus, the equation has no solutions.