The energy density of a fuel is the amount of useful energy stored in a specific amount of that fuel. The energy density, measured in megajoules per kilogram (MJ/kg), is related to the chemical composition of the fuel.
The chemical composition and energy density of four fuels are shown in the table. Ethane, which has a chemical composition of C2H6, is also a fuel. What is the predicted energy density of ethane?
- A. 45 MJ/kg
- B. 42 MJ/kg
- C. 52 MJ/kg
- D. 48 MJ/kg
Correct Answer & Rationale
Correct Answer: C
To determine the predicted energy density of ethane (C2H6), one can analyze its molecular structure and compare it to the energy densities of similar hydrocarbons listed in the table. Ethane, being an alkane, typically has a higher energy density due to its saturated carbon-hydrogen bonds. Option A (45 MJ/kg) is lower than expected for alkanes of similar size. Option B (42 MJ/kg) underestimates the energy density, as it does not align with the general trend for hydrocarbons. Option D (48 MJ/kg) is closer but still below the typical range for ethane. Thus, option C (52 MJ/kg) aligns with the expected energy density for ethane, reflecting its molecular composition and energy potential.
To determine the predicted energy density of ethane (C2H6), one can analyze its molecular structure and compare it to the energy densities of similar hydrocarbons listed in the table. Ethane, being an alkane, typically has a higher energy density due to its saturated carbon-hydrogen bonds. Option A (45 MJ/kg) is lower than expected for alkanes of similar size. Option B (42 MJ/kg) underestimates the energy density, as it does not align with the general trend for hydrocarbons. Option D (48 MJ/kg) is closer but still below the typical range for ethane. Thus, option C (52 MJ/kg) aligns with the expected energy density for ethane, reflecting its molecular composition and energy potential.
Other Related Questions
Which statement from the passage refutes Lavoisier's idea that heat is a fluid that leaves a hot substance and travels to a colder substance?
- A. He also found the brass filings produced from the drilling process contained enough heat to boil water while retaining their weight.
- B. James Joule discovered that heat could be produced by moving a wire through a magnetic field.
- C. Lavoisier demonstrated that oxygen was required for combustion.
- D. Count Rumford observed that the process of boring out cannons from brass cylinders continuously produced heat.
Correct Answer & Rationale
Correct Answer: A
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Which statement correctly summarizes this information?
- A. Hemochromatosis is a dominant genetic disease caused by a single mutation.
- B. Hemochromatosis is a recessive genetic disease, but is caused by a lack of iron.
- C. Hemochromatosis is a recessive genetic disease, but the expression differs in individuals.
- D. Hemochromatosis is a dominant genetic disease that can be caused by several different alleles.
Correct Answer & Rationale
Correct Answer: C
Hemochromatosis is indeed a recessive genetic disorder, meaning that two copies of the mutated gene are typically required for the disease to manifest. Option A incorrectly categorizes it as a dominant disease, which does not align with its genetic inheritance pattern. Option B misstates the condition, as hemochromatosis is characterized by iron overload, not a deficiency. Option D also misrepresents the disease; while there are different alleles involved, hemochromatosis is primarily recessive, not dominant, making option C the most accurate summary of the information.
Hemochromatosis is indeed a recessive genetic disorder, meaning that two copies of the mutated gene are typically required for the disease to manifest. Option A incorrectly categorizes it as a dominant disease, which does not align with its genetic inheritance pattern. Option B misstates the condition, as hemochromatosis is characterized by iron overload, not a deficiency. Option D also misrepresents the disease; while there are different alleles involved, hemochromatosis is primarily recessive, not dominant, making option C the most accurate summary of the information.
What natural process is required to connect the ice core data to the Tunguska Event?
- A. the cycling of carbon in forest fires
- B. the interaction of comets with the solar wind
- C. the movement of glaciers due to gravity
- D. the constant mixing of the atmosphere
Correct Answer & Rationale
Correct Answer: D
Connecting ice core data to the Tunguska Event necessitates understanding atmospheric dynamics, which is achieved through the constant mixing of the atmosphere. This mixing disperses particles and gases, allowing researchers to correlate ice core samples with historical events, including the Tunguska explosion. Option A, the cycling of carbon in forest fires, is unrelated to the atmospheric conditions or the specific data derived from ice cores. Option B, the interaction of comets with the solar wind, pertains to space phenomena rather than terrestrial atmospheric processes. Option C, the movement of glaciers due to gravity, describes glacial dynamics but does not address the atmospheric mixing needed to link ice core data to the event.
Connecting ice core data to the Tunguska Event necessitates understanding atmospheric dynamics, which is achieved through the constant mixing of the atmosphere. This mixing disperses particles and gases, allowing researchers to correlate ice core samples with historical events, including the Tunguska explosion. Option A, the cycling of carbon in forest fires, is unrelated to the atmospheric conditions or the specific data derived from ice cores. Option B, the interaction of comets with the solar wind, pertains to space phenomena rather than terrestrial atmospheric processes. Option C, the movement of glaciers due to gravity, describes glacial dynamics but does not address the atmospheric mixing needed to link ice core data to the event.
Scientists have estimated the mass of the object that caused the Tunguska Event at 5 x 10^12 kilograms (kg). If the object was a comet in which 1% of total mass was ammonia, how much ammonia did the comet contain? kg
Correct Answer & Rationale
Correct Answer: 5x10^10
To find the mass of ammonia in the comet, we calculate 1% of the total mass (5 x 10^12 kg). This is done by multiplying the total mass by 0.01: 5 x 10^12 kg × 0.01 = 5 x 10^10 kg. This calculation confirms that the comet contained 5 x 10^10 kg of ammonia. Other options may result from incorrect calculations, such as misunderstanding the percentage or misapplying the multiplication. For instance, using 0.1 instead of 0.01 would yield an answer ten times larger, while failing to convert the percentage to a decimal would also lead to an incorrect figure.
To find the mass of ammonia in the comet, we calculate 1% of the total mass (5 x 10^12 kg). This is done by multiplying the total mass by 0.01: 5 x 10^12 kg × 0.01 = 5 x 10^10 kg. This calculation confirms that the comet contained 5 x 10^10 kg of ammonia. Other options may result from incorrect calculations, such as misunderstanding the percentage or misapplying the multiplication. For instance, using 0.1 instead of 0.01 would yield an answer ten times larger, while failing to convert the percentage to a decimal would also lead to an incorrect figure.