Scientists agree that our planet is getting warmer. But is there a human cause for global warming, or is it a natural fluctuation in a long-term cycle? Warming cycles throughout Earth's history have caused glacial melting, animal and plant habitat shifts, and earlier flowering seasons for trees. These climate changes often correlate with changes in Earth's orbit known as Milankovitch cycles. For example, Earth's angle of axial tilt varies over the course of 41,000 years from 22.1° to 24.5%. At greater angles, Earth's poles receive more direct solar radiation, or insolation.
Increased insolation results in higher mean temperatures. The Milankovitch theory proposes that cycles in climate arise from these cyclical changes in Earth's orbit. According to one viewpoint, the current warming of our planet is just evidence of a Milankovitch cycle. However, current climate changes are occurring at a faster rate than those in the To explain the different rates, many scientists point to human use of fossil fuels. Fossil fuels release carbon dioxide (CO,) when burned. CO, traps thermal radiation in Earth's atmosphere, a phenomenon known as the greenhouse effect. Recent increased levels of CO, correlate very strongly with increased mean temperatures. Furthermore, the rate of Increase in CO, levels is also rising.
For this reason, many scientists conclude that climate change is anthropogenic (caused by humans). Data that support Milankovitch cycles do not necessarily contradict this conclusion. Supporters of the anthropogenic climate change model only need to demonstrate that the current warming deviates from Milankovitch cycles and that human activities provide a better explanation, Both the anthropogenic climate change model and the Milankovitch theory are consistent with some of the observed climate changes. However, only one offers the best explanation for the current warming of Earth.
Scientists are Interested in whether certain greenhouse gases have helped cause I recent temperature increases. The graph presents data on carbon dioxide and methane gas levels in the atmosphere for the past several centuries. Human activities began producing large quantities of both gases in the 1700s. This graph, combined with information from--------------------, supports ----------------------.
- A. The Milankovitch climate change model
- B. paragraph 3
- C. The anthropogenic climate change model
- D. Paragraph 2
Correct Answer & Rationale
Correct Answer: B, C
The graph illustrates the correlation between rising greenhouse gas levels and temperature increases, supporting the anthropogenic climate change model, which attributes climate change to human activities. Options B and C effectively connect the visual data with the broader context of human influence on climate. Option A, referencing the Milankovitch model, is incorrect as this model focuses on natural Earth cycles, not human impact. Option D lacks specificity and does not directly relate to the evidence presented in the graph. Thus, B and C provide the most relevant support for understanding the relationship between greenhouse gas emissions and climate change.
The graph illustrates the correlation between rising greenhouse gas levels and temperature increases, supporting the anthropogenic climate change model, which attributes climate change to human activities. Options B and C effectively connect the visual data with the broader context of human influence on climate. Option A, referencing the Milankovitch model, is incorrect as this model focuses on natural Earth cycles, not human impact. Option D lacks specificity and does not directly relate to the evidence presented in the graph. Thus, B and C provide the most relevant support for understanding the relationship between greenhouse gas emissions and climate change.
Other Related Questions
best explains the ammonia deposits found in ice core samples from the time of the Tunguska Event. The evidence that best supports the validity of this hypothesis is the-
- A. Hypothesis 2
- B. heat produced by fast-moving objects in the atmosphere
- C. Hypothesis 1
- D. match between measured and predicted amounts of ammonia
Correct Answer & Rationale
Correct Answer: A,D
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
Which statement describes the motion of the object for the first 10 seconds?
- A. The object is moving at a constant speed.
- B. The object is doubling its speed every two seconds.
- C. The object is increasing its height.
- D. The object is accelerating.
Correct Answer & Rationale
Correct Answer: D
The motion of the object for the first 10 seconds indicates that it is accelerating, meaning its speed is increasing over time. Option A is incorrect because constant speed implies no change in velocity, which contradicts the evidence of acceleration. Option B suggests a specific pattern of doubling speed, which is not necessarily true without further information on the object's velocity changes. Option C, while it may imply upward motion, does not capture the essential aspect of acceleration, which is a change in speed rather than just height.
The motion of the object for the first 10 seconds indicates that it is accelerating, meaning its speed is increasing over time. Option A is incorrect because constant speed implies no change in velocity, which contradicts the evidence of acceleration. Option B suggests a specific pattern of doubling speed, which is not necessarily true without further information on the object's velocity changes. Option C, while it may imply upward motion, does not capture the essential aspect of acceleration, which is a change in speed rather than just height.
Scientists can indirectly observe temperatures and insolation (the Intensity or direct solar radiation) in the distant past by measuring oxygen isotope ratios in ice cores collected from polar ice. The graph presents data for the period from what ta200.000 years ago. What time period in the graph shows the greatest correlation between Milankovitch cycles and climate?
- A. 140,000-160,000 years ago
- B. 120,000-140,000 years ago
- C. 100,000-120,000 years ago
- D. 160,000-180,000 years ago
Correct Answer & Rationale
Correct Answer: C
The time period from 100,000 to 120,000 years ago exhibits the greatest correlation between Milankovitch cycles and climate, as evidenced by significant fluctuations in temperature and insolation reflected in the oxygen isotope ratios. This interval aligns closely with the timing of glacial and interglacial periods influenced by Earth's orbital changes. Options A and B show notable climate changes, but they do not align as strongly with Milankovitch cycles, indicating less correlation. Option D, while part of the broader glacial cycle, reveals less pronounced temperature shifts, making it less relevant to the question of correlation.
The time period from 100,000 to 120,000 years ago exhibits the greatest correlation between Milankovitch cycles and climate, as evidenced by significant fluctuations in temperature and insolation reflected in the oxygen isotope ratios. This interval aligns closely with the timing of glacial and interglacial periods influenced by Earth's orbital changes. Options A and B show notable climate changes, but they do not align as strongly with Milankovitch cycles, indicating less correlation. Option D, while part of the broader glacial cycle, reveals less pronounced temperature shifts, making it less relevant to the question of correlation.
Sommer's research concludes that cheetahs have sufficient genetic diversity to respond to common diseases, but may still be at risk of new diseases. Which statement from the passage supports this conclusion?
- A. Major histocompatibility complex (MHC) genes are used by the body to identify self from non-self...
- B. The variation in MHC genes in cheetahs is still smaller than that for other big cat species but appears to be sufficient...
- C. If any of the genetic factors are different, then the immune system of the individual...
- D. Sommer's research determined how many alleles are present on two different types of MHC genes...
Correct Answer & Rationale
Correct Answer: B
Option B directly supports Sommer's conclusion by highlighting that the variation in MHC genes among cheetahs, while less than in other big cats, is adequate for their immune response to common diseases. This indicates sufficient genetic diversity for disease management, aligning with the research's findings. Option A discusses the function of MHC genes but does not address their variation in cheetahs, making it less relevant. Option C mentions genetic factors affecting immune response but lacks specific information about cheetah genetic diversity. Option D focuses on the number of alleles without linking it to the implications for disease response, thus failing to support the conclusion effectively.
Option B directly supports Sommer's conclusion by highlighting that the variation in MHC genes among cheetahs, while less than in other big cats, is adequate for their immune response to common diseases. This indicates sufficient genetic diversity for disease management, aligning with the research's findings. Option A discusses the function of MHC genes but does not address their variation in cheetahs, making it less relevant. Option C mentions genetic factors affecting immune response but lacks specific information about cheetah genetic diversity. Option D focuses on the number of alleles without linking it to the implications for disease response, thus failing to support the conclusion effectively.