Quickly multiply 24x16?
- A. 20x20-4x4
- B. 20x20
- C. 20x10+4x6
- D. 25x10+4x15
Correct Answer & Rationale
Correct Answer: A
Option A, 20x20 - 4x4, effectively utilizes the difference of squares method. It simplifies the multiplication by recognizing that 24 can be expressed as 20 + 4 and 16 as 20 - 4, leading to a calculation of (20+4)(20-4). Option B, 20x20, underestimates the value of 24 and 16, yielding only 400 instead of the correct 384. Option C, 20x10 + 4x6, inaccurately breaks down the multiplication, leading to 200 + 24, which totals 224. Option D, 25x10 + 4x15, misrepresents the factors, resulting in 250 + 60, totaling 310. Thus, option A is the most accurate approach for this multiplication.
Option A, 20x20 - 4x4, effectively utilizes the difference of squares method. It simplifies the multiplication by recognizing that 24 can be expressed as 20 + 4 and 16 as 20 - 4, leading to a calculation of (20+4)(20-4). Option B, 20x20, underestimates the value of 24 and 16, yielding only 400 instead of the correct 384. Option C, 20x10 + 4x6, inaccurately breaks down the multiplication, leading to 200 + 24, which totals 224. Option D, 25x10 + 4x15, misrepresents the factors, resulting in 250 + 60, totaling 310. Thus, option A is the most accurate approach for this multiplication.
Other Related Questions
Joe’s age 4 more than 3x Amy’s. Equation?
- A. A=J/3+4
- B. A=3J+4
- C. J=3A+4
- D. J=3(A+4)
Correct Answer & Rationale
Correct Answer: C
To find the equation representing Joe's age in relation to Amy's, we start with the statement: Joe's age (J) is 4 more than 3 times Amy's age (A). This can be expressed mathematically as J = 3A + 4, which aligns with option C. Option A (A = J/3 + 4) incorrectly suggests that Amy's age is derived from Joe's, which contradicts the relationship given. Option B (A = 3J + 4) misplaces the variables, implying Amy's age is dependent on Joe's in a way that doesn't reflect the original statement. Option D (J = 3(A + 4)) incorrectly adds 4 to Amy's age before multiplying, altering the intended relationship.
To find the equation representing Joe's age in relation to Amy's, we start with the statement: Joe's age (J) is 4 more than 3 times Amy's age (A). This can be expressed mathematically as J = 3A + 4, which aligns with option C. Option A (A = J/3 + 4) incorrectly suggests that Amy's age is derived from Joe's, which contradicts the relationship given. Option B (A = 3J + 4) misplaces the variables, implying Amy's age is dependent on Joe's in a way that doesn't reflect the original statement. Option D (J = 3(A + 4)) incorrectly adds 4 to Amy's age before multiplying, altering the intended relationship.
50 acres, 23 apple. Percent left?
- A. 27%
- B. 46%
- C. 54%
- D. 77%
Correct Answer & Rationale
Correct Answer: C
To determine the percentage of land left after allocating 23 acres for apple trees from a total of 50 acres, first calculate the remaining land: 50 - 23 = 27 acres. Then, to find the percentage of land left, divide the remaining acres by the total acres and multiply by 100: (27/50) * 100 = 54%. Option A (27%) miscalculates the percentage of land used instead of what remains. Option B (46%) incorrectly assumes a different allocation of land. Option D (77%) mistakenly represents a higher percentage than what is left. Thus, option C accurately reflects the remaining percentage of land.
To determine the percentage of land left after allocating 23 acres for apple trees from a total of 50 acres, first calculate the remaining land: 50 - 23 = 27 acres. Then, to find the percentage of land left, divide the remaining acres by the total acres and multiply by 100: (27/50) * 100 = 54%. Option A (27%) miscalculates the percentage of land used instead of what remains. Option B (46%) incorrectly assumes a different allocation of land. Option D (77%) mistakenly represents a higher percentage than what is left. Thus, option C accurately reflects the remaining percentage of land.
Prime numbers? Select ALL.
- A. 21
- B. 23
- C. 25
- D. 27
- E. 29
Correct Answer & Rationale
Correct Answer: B,E
Prime numbers are defined as natural numbers greater than 1 that have no positive divisors other than 1 and themselves. - **Option A: 21** is not prime because it can be divided by 1, 3, 7, and 21. - **Option B: 23** is prime; it has no divisors other than 1 and 23. - **Option C: 25** is not prime as it can be divided by 1, 5, and 25. - **Option D: 27** is not prime since it can be divided by 1, 3, 9, and 27. - **Option E: 29** is prime; it has no divisors other than 1 and 29. Thus, 23 and 29 are the only prime numbers in the list.
Prime numbers are defined as natural numbers greater than 1 that have no positive divisors other than 1 and themselves. - **Option A: 21** is not prime because it can be divided by 1, 3, 7, and 21. - **Option B: 23** is prime; it has no divisors other than 1 and 23. - **Option C: 25** is not prime as it can be divided by 1, 5, and 25. - **Option D: 27** is not prime since it can be divided by 1, 3, 9, and 27. - **Option E: 29** is prime; it has no divisors other than 1 and 29. Thus, 23 and 29 are the only prime numbers in the list.
Shaded region shows?
- A. 3/4 x 1/2
- B. 3/4 x 3/4
- C. 3/4 x 3/2
- D. 3/4 x 3
Correct Answer & Rationale
Correct Answer: A
The shaded region represents the area of a rectangle formed by multiplying two fractions. Option A, \( \frac{3}{4} \times \frac{1}{2} \), correctly calculates the area of a rectangle with a length of \( \frac{3}{4} \) and a width of \( \frac{1}{2} \), resulting in \( \frac{3}{8} \). Option B, \( \frac{3}{4} \times \frac{3}{4} \), represents a larger area, \( \frac{9}{16} \), which does not match the shaded region. Option C, \( \frac{3}{4} \times \frac{3}{2} \), yields \( \frac{9}{8} \), exceeding the shaded area. Finally, option D, \( \frac{3}{4} \times 3 \), results in \( \frac{9}{4} \), also too large. Thus, only option A accurately reflects the area of the shaded region.
The shaded region represents the area of a rectangle formed by multiplying two fractions. Option A, \( \frac{3}{4} \times \frac{1}{2} \), correctly calculates the area of a rectangle with a length of \( \frac{3}{4} \) and a width of \( \frac{1}{2} \), resulting in \( \frac{3}{8} \). Option B, \( \frac{3}{4} \times \frac{3}{4} \), represents a larger area, \( \frac{9}{16} \), which does not match the shaded region. Option C, \( \frac{3}{4} \times \frac{3}{2} \), yields \( \frac{9}{8} \), exceeding the shaded area. Finally, option D, \( \frac{3}{4} \times 3 \), results in \( \frac{9}{4} \), also too large. Thus, only option A accurately reflects the area of the shaded region.