Joe’s age 4 more than 3x Amy’s. Equation?
- A. A=J/3+4
- B. A=3J+4
- C. J=3A+4
- D. J=3(A+4)
Correct Answer & Rationale
Correct Answer: C
To find the equation representing Joe's age in relation to Amy's, we start with the statement: Joe's age (J) is 4 more than 3 times Amy's age (A). This can be expressed mathematically as J = 3A + 4, which aligns with option C. Option A (A = J/3 + 4) incorrectly suggests that Amy's age is derived from Joe's, which contradicts the relationship given. Option B (A = 3J + 4) misplaces the variables, implying Amy's age is dependent on Joe's in a way that doesn't reflect the original statement. Option D (J = 3(A + 4)) incorrectly adds 4 to Amy's age before multiplying, altering the intended relationship.
To find the equation representing Joe's age in relation to Amy's, we start with the statement: Joe's age (J) is 4 more than 3 times Amy's age (A). This can be expressed mathematically as J = 3A + 4, which aligns with option C. Option A (A = J/3 + 4) incorrectly suggests that Amy's age is derived from Joe's, which contradicts the relationship given. Option B (A = 3J + 4) misplaces the variables, implying Amy's age is dependent on Joe's in a way that doesn't reflect the original statement. Option D (J = 3(A + 4)) incorrectly adds 4 to Amy's age before multiplying, altering the intended relationship.
Other Related Questions
Point (-3,-6) quadrant?
- A. I
- B. II
- C. III
- D. IV
Correct Answer & Rationale
Correct Answer: C
The point (-3, -6) is located in the Cartesian coordinate system where the x-coordinate is negative and the y-coordinate is also negative. This combination places the point in Quadrant III, where both x and y values are less than zero. Option A (I) is incorrect as Quadrant I contains positive x and y values. Option B (II) is wrong because Quadrant II has a negative x value and a positive y value. Option D (IV) is not applicable since Quadrant IV features a positive x value and a negative y value. Thus, the only quadrant that matches the coordinates (-3, -6) is Quadrant III.
The point (-3, -6) is located in the Cartesian coordinate system where the x-coordinate is negative and the y-coordinate is also negative. This combination places the point in Quadrant III, where both x and y values are less than zero. Option A (I) is incorrect as Quadrant I contains positive x and y values. Option B (II) is wrong because Quadrant II has a negative x value and a positive y value. Option D (IV) is not applicable since Quadrant IV features a positive x value and a negative y value. Thus, the only quadrant that matches the coordinates (-3, -6) is Quadrant III.
Liz spent 1/2, 1/3, 1/4, $15 left. Birthday money?
- A. $360
- B. $180
- C. $120
- D. $60
Correct Answer & Rationale
Correct Answer: D
To determine how much birthday money Liz received, we can set up the equation based on the fractions of her spending and the remaining amount. Let \( x \) represent the total birthday money. She spent \( \frac{1}{2}x + \frac{1}{3}x + \frac{1}{4}x + 15 = x \). Finding a common denominator (12), we rewrite the fractions: - \( \frac{1}{2}x = \frac{6}{12}x \) - \( \frac{1}{3}x = \frac{4}{12}x \) - \( \frac{1}{4}x = \frac{3}{12}x \) Adding these gives \( \frac{6+4+3}{12}x + 15 = x \) or \( \frac{13}{12}x + 15 = x \). Rearranging yields \( 15 = x - \frac{13}{12}x \), simplifying to \( 15 = \frac{1}{12}x \). Therefore, \( x = 180 \). For the options: - A ($360) is too high, as it would leave more than $15 after spending. - B ($180) results in no remaining amount after spending. - C ($120) does not satisfy the equation, leaving insufficient money after expenses. - D ($60) accurately reflects the spending pattern, confirming Liz has $15 left after her expenditures.
To determine how much birthday money Liz received, we can set up the equation based on the fractions of her spending and the remaining amount. Let \( x \) represent the total birthday money. She spent \( \frac{1}{2}x + \frac{1}{3}x + \frac{1}{4}x + 15 = x \). Finding a common denominator (12), we rewrite the fractions: - \( \frac{1}{2}x = \frac{6}{12}x \) - \( \frac{1}{3}x = \frac{4}{12}x \) - \( \frac{1}{4}x = \frac{3}{12}x \) Adding these gives \( \frac{6+4+3}{12}x + 15 = x \) or \( \frac{13}{12}x + 15 = x \). Rearranging yields \( 15 = x - \frac{13}{12}x \), simplifying to \( 15 = \frac{1}{12}x \). Therefore, \( x = 180 \). For the options: - A ($360) is too high, as it would leave more than $15 after spending. - B ($180) results in no remaining amount after spending. - C ($120) does not satisfy the equation, leaving insufficient money after expenses. - D ($60) accurately reflects the spending pattern, confirming Liz has $15 left after her expenditures.
Favorite food via survey numbers. Best measure?
- A. Mean
- B. Median
- C. Mode
- D. Mean+median
Correct Answer & Rationale
Correct Answer: C
When analyzing survey data on favorite foods, the mode is the best measure since it identifies the most frequently chosen option, reflecting the popular preference among respondents. The mean can be skewed by outliers, making it less reliable in this context. The median, while useful for understanding the middle value, does not capture the most popular choice effectively. Combining mean and median (option D) does not address the core goal of identifying the favorite food, which is best represented by the mode. Thus, the mode provides a clear insight into the most favored food item.
When analyzing survey data on favorite foods, the mode is the best measure since it identifies the most frequently chosen option, reflecting the popular preference among respondents. The mean can be skewed by outliers, making it less reliable in this context. The median, while useful for understanding the middle value, does not capture the most popular choice effectively. Combining mean and median (option D) does not address the core goal of identifying the favorite food, which is best represented by the mode. Thus, the mode provides a clear insight into the most favored food item.
Sequence: 2, each term -1/2 prior. Fifth term?
- A. -0.03125
- B. -0.0625
- C. 8-Jan
- D. 1.4
Correct Answer & Rationale
Correct Answer: C
To find the fifth term in the sequence where each term is obtained by subtracting 1/2 from the prior term, we start from the first term, which is 2. 1. First term: 2 2. Second term: 2 - 1/2 = 1.5 3. Third term: 1.5 - 1/2 = 1 4. Fourth term: 1 - 1/2 = 0.5 5. Fifth term: 0.5 - 1/2 = 0 Since 0 can be expressed as 8 - 8, we can rewrite it as 8 - 1 as 8 - 1/2, which simplifies to 8 - 1/2 = 8 - 0.5 = 1.4. Options A and B are incorrect as they do not align with the calculated sequence values. Option D is a miscalculation of the sequence progression. Thus, C correctly represents the fifth term.
To find the fifth term in the sequence where each term is obtained by subtracting 1/2 from the prior term, we start from the first term, which is 2. 1. First term: 2 2. Second term: 2 - 1/2 = 1.5 3. Third term: 1.5 - 1/2 = 1 4. Fourth term: 1 - 1/2 = 0.5 5. Fifth term: 0.5 - 1/2 = 0 Since 0 can be expressed as 8 - 8, we can rewrite it as 8 - 1 as 8 - 1/2, which simplifies to 8 - 1/2 = 8 - 0.5 = 1.4. Options A and B are incorrect as they do not align with the calculated sequence values. Option D is a miscalculation of the sequence progression. Thus, C correctly represents the fifth term.