If the values of x and y are negative, which of the following values must be positive?
- A. x²-y²
- B. x/y
- C. x+y
- D. x-y
Correct Answer & Rationale
Correct Answer: B
When both x and y are negative, the quotient \( x/y \) results in a positive value. This is because dividing a negative number by another negative number yields a positive outcome. Option A, \( x^2 - y^2 \), can be either positive or negative depending on the magnitudes of x and y; thus, it is not guaranteed to be positive. Option C, \( x + y \), is the sum of two negative numbers, which will always be negative. Option D, \( x - y \), involves subtracting a negative (y) from another negative (x), which can also yield a negative or zero result, depending on their values. Only \( x/y \) is assuredly positive.
When both x and y are negative, the quotient \( x/y \) results in a positive value. This is because dividing a negative number by another negative number yields a positive outcome. Option A, \( x^2 - y^2 \), can be either positive or negative depending on the magnitudes of x and y; thus, it is not guaranteed to be positive. Option C, \( x + y \), is the sum of two negative numbers, which will always be negative. Option D, \( x - y \), involves subtracting a negative (y) from another negative (x), which can also yield a negative or zero result, depending on their values. Only \( x/y \) is assuredly positive.
Other Related Questions
Which of the following must be true?
- A. 4x-3=26
- B. 4x-1=26
- C. 5x-1=26
- D. 5x+1=26
Correct Answer & Rationale
Correct Answer: A
To determine which equation must be true, we can solve each one for \( x \). **Option A:** \( 4x - 3 = 26 \) simplifies to \( 4x = 29 \), giving \( x = 7.25 \). **Option B:** \( 4x - 1 = 26 \) simplifies to \( 4x = 27 \), giving \( x = 6.75 \). **Option C:** \( 5x - 1 = 26 \) simplifies to \( 5x = 27 \), giving \( x = 5.4 \). **Option D:** \( 5x + 1 = 26 \) simplifies to \( 5x = 25 \), giving \( x = 5 \). Each equation yields a different value for \( x \) except for Option A, which is the only equation that aligns with the requirement of the question. Thus, it is the only one that must be true based on the context provided.
To determine which equation must be true, we can solve each one for \( x \). **Option A:** \( 4x - 3 = 26 \) simplifies to \( 4x = 29 \), giving \( x = 7.25 \). **Option B:** \( 4x - 1 = 26 \) simplifies to \( 4x = 27 \), giving \( x = 6.75 \). **Option C:** \( 5x - 1 = 26 \) simplifies to \( 5x = 27 \), giving \( x = 5.4 \). **Option D:** \( 5x + 1 = 26 \) simplifies to \( 5x = 25 \), giving \( x = 5 \). Each equation yields a different value for \( x \) except for Option A, which is the only equation that aligns with the requirement of the question. Thus, it is the only one that must be true based on the context provided.
A bowl contains 6 green grapes, 10 red grapes, and 8 black grapes.Which of the following is the correct calculation for the probability of choosing a red grape and then without putting the red grape back into the bowl, choosing a green grape?
- A. 10/24+6/24
- B. 10/24+6/23
- C. 10/24*6/24
- D. 10/24*6/23
Correct Answer & Rationale
Correct Answer: D
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
During a sale, the regular price of a pair of running shoes is reduced by 20 percent. $64.00, what is the regular price of the running shoes?
- A. $48.00
- B. $51.20
- C. $76.80
- D. $80.00
Correct Answer & Rationale
Correct Answer: D
To find the regular price of the running shoes, we need to determine what amount, when reduced by 20%, equals $64.00. This can be calculated using the formula: Sale Price = Regular Price × (1 - Discount Rate). Here, the discount rate is 20%, or 0.20. Therefore, the equation becomes $64.00 = Regular Price × 0.80. Solving for Regular Price gives us $64.00 / 0.80 = $80.00. Option A ($48.00) is incorrect because it suggests a much larger discount than 20%. Option B ($51.20) miscalculates the reduction, indicating a 36% discount. Option C ($76.80) inaccurately reflects a smaller discount, resulting in an incorrect sale price. Thus, only option D correctly represents the regular price before the 20% reduction.
To find the regular price of the running shoes, we need to determine what amount, when reduced by 20%, equals $64.00. This can be calculated using the formula: Sale Price = Regular Price × (1 - Discount Rate). Here, the discount rate is 20%, or 0.20. Therefore, the equation becomes $64.00 = Regular Price × 0.80. Solving for Regular Price gives us $64.00 / 0.80 = $80.00. Option A ($48.00) is incorrect because it suggests a much larger discount than 20%. Option B ($51.20) miscalculates the reduction, indicating a 36% discount. Option C ($76.80) inaccurately reflects a smaller discount, resulting in an incorrect sale price. Thus, only option D correctly represents the regular price before the 20% reduction.
For what values of x does 5x ^ 2 + 4x - 4 = 0 ?
- A. x = 1/5 and x = - 1
- B. x = - 4/5 and x = 1
- C. x = (- 2±6 * √(2))/5
- D. x = (- 2±2 * √(6))/5
Correct Answer & Rationale
Correct Answer: D
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.
To solve the quadratic equation \(5x^2 + 4x - 4 = 0\), one can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\). Here, \(a = 5\), \(b = 4\), and \(c = -4\). Calculating the discriminant gives \(b^2 - 4ac = 16 + 80 = 96\), leading to \(x = \frac{-4 \pm \sqrt{96}}{10} = \frac{-4 \pm 4\sqrt{6}}{10} = \frac{-2 \pm 2\sqrt{6}}{5}\), which matches option D. Option A provides incorrect roots not derived from the quadratic formula. Option B also presents incorrect values, failing to satisfy the equation. Option C miscalculates the discriminant, leading to an incorrect expression. Thus, D accurately reflects the solution to the equation.