Equivalent to 2(4f+2g)? Select ALL.
- A. 4*(2f+g)
- B. 4(2f+2g)
- C. 2f(4+2g)
- D. 16f+4g
- E. 8f+2g
Correct Answer & Rationale
Correct Answer: A,F
To determine which expressions are equivalent to \( 2(4f + 2g) \), we first simplify it: \[ 2(4f + 2g) = 8f + 4g \] Now, let's analyze each option: **A: \( 4(2f + g) \)** This expands to \( 8f + 4g \), matching our simplified expression. **B: \( 4(2f + 2g) \)** This simplifies to \( 8f + 8g \), which does not match \( 8f + 4g \). **C: \( 2f(4 + 2g) \)** This expands to \( 8f + 4fg \), introducing an extra term \( 4fg \) that makes it unequal. **D: \( 16f + 4g \)** This expression has \( 16f \), which is double the \( 8f \) we expect, thus it is not equivalent. **E: \( 8f + 2g \)** Here, while \( 8f \) matches, \( 2g \) does not equal \( 4g \), making it non-equivalent. **F: \( 8f + 4g \)** This matches our simplified expression exactly, confirming its equivalence. In summary, options A and F correctly represent the original expression, while B, C, D, and E do not.
To determine which expressions are equivalent to \( 2(4f + 2g) \), we first simplify it: \[ 2(4f + 2g) = 8f + 4g \] Now, let's analyze each option: **A: \( 4(2f + g) \)** This expands to \( 8f + 4g \), matching our simplified expression. **B: \( 4(2f + 2g) \)** This simplifies to \( 8f + 8g \), which does not match \( 8f + 4g \). **C: \( 2f(4 + 2g) \)** This expands to \( 8f + 4fg \), introducing an extra term \( 4fg \) that makes it unequal. **D: \( 16f + 4g \)** This expression has \( 16f \), which is double the \( 8f \) we expect, thus it is not equivalent. **E: \( 8f + 2g \)** Here, while \( 8f \) matches, \( 2g \) does not equal \( 4g \), making it non-equivalent. **F: \( 8f + 4g \)** This matches our simplified expression exactly, confirming its equivalence. In summary, options A and F correctly represent the original expression, while B, C, D, and E do not.
Other Related Questions
Graph for data over time?
- A. Bar
- B. Line
- C. Stem-and-leaf
- D. Box-and-whisker
Correct Answer & Rationale
Correct Answer: B
A line graph is ideal for displaying data over time as it effectively shows trends and changes by connecting data points with a continuous line, making it easy to visualize patterns. Option A, a bar graph, is better suited for comparing discrete categories rather than illustrating changes over time. Option C, a stem-and-leaf plot, is primarily used for displaying the distribution of numerical data and is not designed for time-series analysis. Option D, a box-and-whisker plot, summarizes data distribution and highlights outliers but does not convey trends over time effectively.
A line graph is ideal for displaying data over time as it effectively shows trends and changes by connecting data points with a continuous line, making it easy to visualize patterns. Option A, a bar graph, is better suited for comparing discrete categories rather than illustrating changes over time. Option C, a stem-and-leaf plot, is primarily used for displaying the distribution of numerical data and is not designed for time-series analysis. Option D, a box-and-whisker plot, summarizes data distribution and highlights outliers but does not convey trends over time effectively.
Caterpillar 1 ft in 7.5 min. 18 min?
- A. 2.4
- B. 8
- C. 11.5
- D. 25.5
Correct Answer & Rationale
Correct Answer: A
To determine how far the caterpillar travels in 18 minutes, first calculate its speed. It moves 1 foot in 7.5 minutes, which equates to \( \frac{1 \text{ ft}}{7.5 \text{ min}} \). In 18 minutes, the distance covered can be calculated using the formula: \[ \text{Distance} = \text{Speed} \times \text{Time} \] Converting 18 minutes into feet: \[ \text{Distance} = \left(\frac{1 \text{ ft}}{7.5 \text{ min}}\right) \times 18 \text{ min} = 2.4 \text{ ft} \] Option B (8) overestimates the distance, while C (11.5) and D (25.5) significantly exceed the calculated distance, demonstrating a misunderstanding of the speed-time relationship.
To determine how far the caterpillar travels in 18 minutes, first calculate its speed. It moves 1 foot in 7.5 minutes, which equates to \( \frac{1 \text{ ft}}{7.5 \text{ min}} \). In 18 minutes, the distance covered can be calculated using the formula: \[ \text{Distance} = \text{Speed} \times \text{Time} \] Converting 18 minutes into feet: \[ \text{Distance} = \left(\frac{1 \text{ ft}}{7.5 \text{ min}}\right) \times 18 \text{ min} = 2.4 \text{ ft} \] Option B (8) overestimates the distance, while C (11.5) and D (25.5) significantly exceed the calculated distance, demonstrating a misunderstanding of the speed-time relationship.
Measure pencil length?
- A. Millimeter
- B. Centimeter
- C. Meter
- D. Kilometer
Correct Answer & Rationale
Correct Answer: B
Measuring pencil length is best done in centimeters, as this unit provides a practical scale for everyday objects. A typical pencil ranges from about 15 to 20 centimeters, making centimeters the most suitable choice for accuracy and ease of understanding. Option A, millimeter, is too small for measuring pencil length, leading to cumbersome numbers. Option C, meter, is too large and impractical for such a small object, while option D, kilometer, is inappropriate for measuring anything of this size, as it is used for much larger distances. Thus, centimeters strike the perfect balance for this measurement.
Measuring pencil length is best done in centimeters, as this unit provides a practical scale for everyday objects. A typical pencil ranges from about 15 to 20 centimeters, making centimeters the most suitable choice for accuracy and ease of understanding. Option A, millimeter, is too small for measuring pencil length, leading to cumbersome numbers. Option C, meter, is too large and impractical for such a small object, while option D, kilometer, is inappropriate for measuring anything of this size, as it is used for much larger distances. Thus, centimeters strike the perfect balance for this measurement.
Digit 1 in ten thousands 9 in ones? Select ALL.
- A. 12,679
- B. 12,769
- C. 12,796
- D. 21,679
- E. 21,769
Correct Answer & Rationale
Correct Answer: A,B: 1 ten thousands, 9 ones. C: 6 ones. D,E,F: 2 ten thousands. Place values must match both conditions.
To identify numbers with 1 in the ten thousands place and 9 in the ones place, we analyze each option. - **A (12,679)**: The digit 1 is in the ten thousands place, and 9 is in the ones place, meeting both criteria. - **B (12,769)**: Here, 1 is again in the ten thousands place, and 9 is in the ones place, satisfying the conditions. - **C (12,796)**: The digit in the ones place is 6, not 9, which disqualifies it. - **D (21,679)**: The digit in the ten thousands place is 2, failing to meet the first condition. - **E (21,769)**: Similarly, 2 is in the ten thousands place, not 1. - **F (21,796)**: Again, 2 is in the ten thousands place, disqualifying this option. Only options A and B fulfill both requirements, confirming their validity.
To identify numbers with 1 in the ten thousands place and 9 in the ones place, we analyze each option. - **A (12,679)**: The digit 1 is in the ten thousands place, and 9 is in the ones place, meeting both criteria. - **B (12,769)**: Here, 1 is again in the ten thousands place, and 9 is in the ones place, satisfying the conditions. - **C (12,796)**: The digit in the ones place is 6, not 9, which disqualifies it. - **D (21,679)**: The digit in the ten thousands place is 2, failing to meet the first condition. - **E (21,769)**: Similarly, 2 is in the ten thousands place, not 1. - **F (21,796)**: Again, 2 is in the ten thousands place, disqualifying this option. Only options A and B fulfill both requirements, confirming their validity.