Which graph represents a function?
- A. M-27A.png
- B. M-27B.png
- C. M-27C.png
Correct Answer & Rationale
Correct Answer: B
To determine which graph represents a function, we apply the Vertical Line Test. This test states that if a vertical line intersects the graph at more than one point, the graph does not represent a function. Option A fails this test, as a vertical line can intersect the graph at multiple points, indicating it is not a function. Option C also does not satisfy the criteria, showing multiple intersections with vertical lines. In contrast, Option B passes the Vertical Line Test, as any vertical line drawn will intersect the graph at only one point, confirming it represents a function.
To determine which graph represents a function, we apply the Vertical Line Test. This test states that if a vertical line intersects the graph at more than one point, the graph does not represent a function. Option A fails this test, as a vertical line can intersect the graph at multiple points, indicating it is not a function. Option C also does not satisfy the criteria, showing multiple intersections with vertical lines. In contrast, Option B passes the Vertical Line Test, as any vertical line drawn will intersect the graph at only one point, confirming it represents a function.
Other Related Questions
Which pair of equations represents parallel lines?
- A. -2x + y + 2 = 0, y = -(1/2)x - 4
- B. 3x + y = -8, y = 3x - 8
- C. x + 2y = 8, -x - 2y = 3
- D. -(2/3)x + y = 12, y = -(3/2)x - 1
Correct Answer & Rationale
Correct Answer: C
To identify parallel lines, the slopes of the equations must be equal. Option A has slopes of 1/2 and -1/2, which are not equal. Option B has slopes of 3 and 3, indicating the lines are parallel; however, it is not the correct answer as it does not match the requirement for both equations. Option C has the first equation rearranged to slope -1/2 and the second to slope -1/2, confirming they are parallel. Option D features slopes of 2/3 and -3/2, which are also not equal, indicating the lines intersect. Thus, only option C accurately represents parallel lines.
To identify parallel lines, the slopes of the equations must be equal. Option A has slopes of 1/2 and -1/2, which are not equal. Option B has slopes of 3 and 3, indicating the lines are parallel; however, it is not the correct answer as it does not match the requirement for both equations. Option C has the first equation rearranged to slope -1/2 and the second to slope -1/2, confirming they are parallel. Option D features slopes of 2/3 and -3/2, which are also not equal, indicating the lines intersect. Thus, only option C accurately represents parallel lines.
A cyclist can travel 17.6 feet per second. The cyclist would have a better understanding of her speed if it were measured in miles per hour. Which of these completes the expression used to convert the speed of the cyclist to miles per hour?
- A. 1 hour/60 seconds = 1 mile/5,280 feet
- B. 60 minutes/1 hour = 1 mile/5280 feet
- C. 60 minutes/1 hour = 5280 feet/1 mile
- D. 12 inches/1 foot = 60 minutes/1 hour
Correct Answer & Rationale
Correct Answer: C
To convert speed from feet per second to miles per hour, the conversion factors must relate time and distance appropriately. Option C correctly expresses the relationship between miles and feet, stating that 1 mile equals 5280 feet. Additionally, it includes the conversion of minutes to hours, with 60 minutes equating to 1 hour, which is essential for converting seconds to hours. Option A incorrectly suggests a different time conversion that mixes hours and seconds without properly aligning the units. Option B, while correctly stating the time conversion, mistakenly places the units in an incorrect order. Option D is irrelevant, as it focuses on inches and does not contribute to the necessary conversions for speed.
To convert speed from feet per second to miles per hour, the conversion factors must relate time and distance appropriately. Option C correctly expresses the relationship between miles and feet, stating that 1 mile equals 5280 feet. Additionally, it includes the conversion of minutes to hours, with 60 minutes equating to 1 hour, which is essential for converting seconds to hours. Option A incorrectly suggests a different time conversion that mixes hours and seconds without properly aligning the units. Option B, while correctly stating the time conversion, mistakenly places the units in an incorrect order. Option D is irrelevant, as it focuses on inches and does not contribute to the necessary conversions for speed.
Solve the equation for x: (2x-3)/5 = x/10
- A. 2
- B. 3
- C. 1\5
- D. 10
Correct Answer & Rationale
Correct Answer: A
To solve the equation \((2x-3)/5 = x/10\), first eliminate the fractions by multiplying both sides by 10, resulting in \(2(2x - 3) = x\). Simplifying gives \(4x - 6 = x\). Rearranging leads to \(4x - x = 6\), or \(3x = 6\), giving \(x = 2\). Option B (3) does not satisfy the equation when substituted back. Option C (1/5) results in a negative left side, while Option D (10) leads to an incorrect balance in the original equation. Thus, the only solution that holds true is \(x = 2\).
To solve the equation \((2x-3)/5 = x/10\), first eliminate the fractions by multiplying both sides by 10, resulting in \(2(2x - 3) = x\). Simplifying gives \(4x - 6 = x\). Rearranging leads to \(4x - x = 6\), or \(3x = 6\), giving \(x = 2\). Option B (3) does not satisfy the equation when substituted back. Option C (1/5) results in a negative left side, while Option D (10) leads to an incorrect balance in the original equation. Thus, the only solution that holds true is \(x = 2\).
What is the value of the expression 2j - 7jkm when j = 5, k = -14, and m = -3?
Correct Answer & Rationale
Correct Answer: A
To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.
To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.