What is the slope of a line perpendicular to the line given by the equation 5x - 2y = -10?
- A. -0.4
- B. 2\5
- C. 5\2
- D. -2.5
Correct Answer & Rationale
Correct Answer: B
To find the slope of a line perpendicular to the given equation \(5x - 2y = -10\), we first convert it to slope-intercept form (y = mx + b). Rearranging gives \(y = \frac{5}{2}x + 5\), revealing a slope (m) of \(\frac{5}{2}\). The slope of a line perpendicular to another is the negative reciprocal, which is \(-\frac{2}{5}\). Option A (-0.4) is equivalent to \(-\frac{2}{5}\), which is incorrect as it represents a decimal form. Option C (\(\frac{5}{2}\)) is the slope of the original line, not its perpendicular. Option D (-2.5) does not represent the correct negative reciprocal either.
To find the slope of a line perpendicular to the given equation \(5x - 2y = -10\), we first convert it to slope-intercept form (y = mx + b). Rearranging gives \(y = \frac{5}{2}x + 5\), revealing a slope (m) of \(\frac{5}{2}\). The slope of a line perpendicular to another is the negative reciprocal, which is \(-\frac{2}{5}\). Option A (-0.4) is equivalent to \(-\frac{2}{5}\), which is incorrect as it represents a decimal form. Option C (\(\frac{5}{2}\)) is the slope of the original line, not its perpendicular. Option D (-2.5) does not represent the correct negative reciprocal either.
Other Related Questions
The equation and the graph represent two linear functions.
Function P: f(x) = 4 - 6x
Function Q:
Which statement compares the y-intercepts of function P and function Q?
- A. The y-intercept of function P is -6 which is less than the y-intercept of function Q.
- B. The y-intercept of function P is 4 which is equal to the y-intercept of function Q.
- C. The y-intercept of function P is -6 which is greater than the y-intercept of function Q.
- D. The y-intercept of function P is 4 which is greater than the y-intercept of function Q.
Correct Answer & Rationale
Correct Answer: D
Function P, represented by the equation \( f(x) = 4 - 6x \), has a y-intercept of 4, which is found by evaluating \( f(0) \). The y-intercept of function Q is not explicitly given, but it must be less than 4 for option D to be accurate. Option A incorrectly states that the y-intercept of P is -6. Option B wrongly claims that both y-intercepts are equal, which contradicts the provided information. Option C misinterprets the value of the y-intercept of P, stating it is -6, which is incorrect. Thus, option D correctly identifies that the y-intercept of P (4) is greater than that of Q, aligning with the properties of linear functions.
Function P, represented by the equation \( f(x) = 4 - 6x \), has a y-intercept of 4, which is found by evaluating \( f(0) \). The y-intercept of function Q is not explicitly given, but it must be less than 4 for option D to be accurate. Option A incorrectly states that the y-intercept of P is -6. Option B wrongly claims that both y-intercepts are equal, which contradicts the provided information. Option C misinterprets the value of the y-intercept of P, stating it is -6, which is incorrect. Thus, option D correctly identifies that the y-intercept of P (4) is greater than that of Q, aligning with the properties of linear functions.
Which equation represents the graphed line?
- A. y = -1/3x +3
- B. y = 3x - 7
- C. y = 3x + 7
- D. y = 1/3x + 1
Correct Answer & Rationale
Correct Answer: D
The equation y = 1/3x + 1 accurately represents the graphed line due to its positive slope of 1/3, indicating a gradual upward rise, consistent with the line’s direction. The y-intercept of 1 shows that the line crosses the y-axis at the point (0, 1), aligning perfectly with the graph. Option A, with a slope of -1/3, suggests a downward trend, which contradicts the graph’s upward slope. Option B has a much steeper slope of 3, leading to a different angle of rise. Option C also has a slope of 3 and a y-intercept of 7, which does not match the graph’s intercept. Thus, only D accurately reflects both the slope and intercept of the line shown.
The equation y = 1/3x + 1 accurately represents the graphed line due to its positive slope of 1/3, indicating a gradual upward rise, consistent with the line’s direction. The y-intercept of 1 shows that the line crosses the y-axis at the point (0, 1), aligning perfectly with the graph. Option A, with a slope of -1/3, suggests a downward trend, which contradicts the graph’s upward slope. Option B has a much steeper slope of 3, leading to a different angle of rise. Option C also has a slope of 3 and a y-intercept of 7, which does not match the graph’s intercept. Thus, only D accurately reflects both the slope and intercept of the line shown.
Kelly has a home business making jewellery. It takes 2 hours for her to make each bracelet and 3.5 hours to make each necklace. Next month she plans to spend 140 hours to make jewellery. If she fills a special order for 22 bracelets at the beginning of the mouth and spends the rest of the month making necklaces, how many necklaces can Kelly make in the month
- A. 52
- B. 27
- C. 40
- D. 31
Correct Answer & Rationale
Correct Answer: B
To determine how many necklaces Kelly can make, first calculate the time spent on bracelets. Making 22 bracelets takes 22 x 2 = 44 hours. Subtracting this from her total available time of 140 hours leaves her with 140 - 44 = 96 hours for necklaces. Each necklace takes 3.5 hours, so she can make 96 ÷ 3.5 = 27.43, which rounds down to 27 necklaces since she cannot make a fraction of a necklace. Options A (52), C (40), and D (31) are incorrect because they exceed the available time after accounting for the hours spent on bracelets, indicating miscalculations in time management or misunderstanding of the problem constraints.
To determine how many necklaces Kelly can make, first calculate the time spent on bracelets. Making 22 bracelets takes 22 x 2 = 44 hours. Subtracting this from her total available time of 140 hours leaves her with 140 - 44 = 96 hours for necklaces. Each necklace takes 3.5 hours, so she can make 96 ÷ 3.5 = 27.43, which rounds down to 27 necklaces since she cannot make a fraction of a necklace. Options A (52), C (40), and D (31) are incorrect because they exceed the available time after accounting for the hours spent on bracelets, indicating miscalculations in time management or misunderstanding of the problem constraints.
At a local bank, certificates of deposit (CDs) mature every 9 months. At another bank, CDs mature every 12 months. If CDs are purchased on the same day at each bank and are renewed when they mature, what is the least number of months that will pass before the two banks' CDs are mature at the same time?
- A. 72
- B. 36
- C. 108
- D. 3
Correct Answer & Rationale
Correct Answer: B
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.