Which equation represents the graphed line?
- A. y = -1/3x +3
- B. y = 3x - 7
- C. y = 3x + 7
- D. y = 1/3x + 1
Correct Answer & Rationale
Correct Answer: D
The equation y = 1/3x + 1 accurately represents the graphed line due to its positive slope of 1/3, indicating a gradual upward rise, consistent with the line’s direction. The y-intercept of 1 shows that the line crosses the y-axis at the point (0, 1), aligning perfectly with the graph. Option A, with a slope of -1/3, suggests a downward trend, which contradicts the graph’s upward slope. Option B has a much steeper slope of 3, leading to a different angle of rise. Option C also has a slope of 3 and a y-intercept of 7, which does not match the graph’s intercept. Thus, only D accurately reflects both the slope and intercept of the line shown.
The equation y = 1/3x + 1 accurately represents the graphed line due to its positive slope of 1/3, indicating a gradual upward rise, consistent with the line’s direction. The y-intercept of 1 shows that the line crosses the y-axis at the point (0, 1), aligning perfectly with the graph. Option A, with a slope of -1/3, suggests a downward trend, which contradicts the graph’s upward slope. Option B has a much steeper slope of 3, leading to a different angle of rise. Option C also has a slope of 3 and a y-intercept of 7, which does not match the graph’s intercept. Thus, only D accurately reflects both the slope and intercept of the line shown.
Other Related Questions
What is the volume, in cubic inches, of the pyramid?
- A. 21,600
- B. 1,440
- C. 7,200
- D. 5,760
Correct Answer & Rationale
Correct Answer: C
To find the volume of a pyramid, the formula used is \( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \). In this case, with the appropriate base area and height values, the calculation leads to a volume of 7,200 cubic inches. Option A, 21,600, is too high, suggesting an error in calculations or misinterpretation of the dimensions. Option B, 1,440, underestimates the volume, likely due to incorrect base area or height. Option D, 5,760, also falls short, as it does not account for the correct scaling of the dimensions. Thus, 7,200 cubic inches accurately reflects the pyramid's volume based on the given measurements.
To find the volume of a pyramid, the formula used is \( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \). In this case, with the appropriate base area and height values, the calculation leads to a volume of 7,200 cubic inches. Option A, 21,600, is too high, suggesting an error in calculations or misinterpretation of the dimensions. Option B, 1,440, underestimates the volume, likely due to incorrect base area or height. Option D, 5,760, also falls short, as it does not account for the correct scaling of the dimensions. Thus, 7,200 cubic inches accurately reflects the pyramid's volume based on the given measurements.
Acceleration, a, in meters per second squared (m/5}), is found by the formula a= (V2-V2)/t where V1, is the beginning velocity, V2 is the end velocity, and t is time. What is the acceleration, in m/s^2, of an object with a beginning velocity of 14 m/s and end velocity of 8 m/s over a time of 4 seconds?
- A. 1.5
- B. -1.5
- C. 4.5
- D. -12
Correct Answer & Rationale
Correct Answer: B
To find acceleration, use the formula \( a = \frac{V2 - V1}{t} \). Here, \( V1 = 14 \, \text{m/s} \) and \( V2 = 8 \, \text{m/s} \). Plugging in the values gives \( a = \frac{8 - 14}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference between velocities and does not reflect the negative change. Option D (-12) results from incorrect arithmetic, misapplying the formula. Thus, the only accurate calculation shows the object is decelerating at -1.5 m/s².
To find acceleration, use the formula \( a = \frac{V2 - V1}{t} \). Here, \( V1 = 14 \, \text{m/s} \) and \( V2 = 8 \, \text{m/s} \). Plugging in the values gives \( a = \frac{8 - 14}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference between velocities and does not reflect the negative change. Option D (-12) results from incorrect arithmetic, misapplying the formula. Thus, the only accurate calculation shows the object is decelerating at -1.5 m/s².
Dr. Evers is experimenting with light beams and prisms. He passes a beam of white light through a triangular prism which spreads the light out into its six rainbow colors. The bases of the prism are equilateral triangles. The surface area of this prism is 4,292 square millimeters. The area of each triangular face is 271 square millimeters. Which expression can be used to find h, the height, in millimeters, of the prism?
- A. 4,292/3(25)
- B. 4,292/271
- C. (4,292-271)/25
- D. (4,292-2(271))/3(25)
Correct Answer & Rationale
Correct Answer: D
To find the height \( h \) of the prism, we start with the total surface area of the prism, which includes the two triangular bases and three rectangular sides. The area of the two triangular bases is \( 2 \times 271 = 542 \) square millimeters. Subtracting this from the total surface area gives \( 4,292 - 542 = 3,750 \) square millimeters for the area of the rectangular sides. Since the height \( h \) is involved in the area of the rectangles, dividing this area by the perimeter of the base (which is \( 3 \times 25 = 75 \) mm) leads to \( h = \frac{3,750}{75} \) or \( \frac{4,292 - 542}{75} \), simplifying to option D. Options A and B incorrectly compute the height without accounting for the rectangular areas properly. Option C miscalculates the area of the triangular bases and does not consider the full surface area needed to find \( h \). Thus, only option D correctly utilizes the total surface area and the dimensions of the prism to derive the height.
To find the height \( h \) of the prism, we start with the total surface area of the prism, which includes the two triangular bases and three rectangular sides. The area of the two triangular bases is \( 2 \times 271 = 542 \) square millimeters. Subtracting this from the total surface area gives \( 4,292 - 542 = 3,750 \) square millimeters for the area of the rectangular sides. Since the height \( h \) is involved in the area of the rectangles, dividing this area by the perimeter of the base (which is \( 3 \times 25 = 75 \) mm) leads to \( h = \frac{3,750}{75} \) or \( \frac{4,292 - 542}{75} \), simplifying to option D. Options A and B incorrectly compute the height without accounting for the rectangular areas properly. Option C miscalculates the area of the triangular bases and does not consider the full surface area needed to find \( h \). Thus, only option D correctly utilizes the total surface area and the dimensions of the prism to derive the height.
A shipping box for a refrigerator is shaped like a rectangular prism. The box has a depth of 34,25 Inches (in.), a height of 69,37 in., and a width of 32.62 in. To the nearest hundredth cubic inch, what is the volume of the shipping box?
- A. 2,262.85
- B. 77,502.59
- C. 136.24
- D. 25,834.20
Correct Answer & Rationale
Correct Answer: B
To find the volume of a rectangular prism, multiply its depth, height, and width. In this case, the volume calculation is 34.25 in. (depth) × 69.37 in. (height) × 32.62 in. (width), which equals approximately 77,502.59 cubic inches. Option A (2,262.85) is far too small, likely resulting from an incorrect calculation or misunderstanding of the dimensions. Option C (136.24) represents an even smaller volume, which does not align with the dimensions given. Option D (25,834.20) is also incorrect, as it underestimates the overall volume significantly. Thus, only option B accurately reflects the computed volume of the shipping box.
To find the volume of a rectangular prism, multiply its depth, height, and width. In this case, the volume calculation is 34.25 in. (depth) × 69.37 in. (height) × 32.62 in. (width), which equals approximately 77,502.59 cubic inches. Option A (2,262.85) is far too small, likely resulting from an incorrect calculation or misunderstanding of the dimensions. Option C (136.24) represents an even smaller volume, which does not align with the dimensions given. Option D (25,834.20) is also incorrect, as it underestimates the overall volume significantly. Thus, only option B accurately reflects the computed volume of the shipping box.