ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

Which equation represents the graphed line?
Question image
  • A. y = -1/3x +3
  • B. y = 3x - 7
  • C. y = 3x + 7
  • D. y = 1/3x + 1
Correct Answer & Rationale
Correct Answer: D

The equation y = 1/3x + 1 accurately represents the graphed line due to its positive slope of 1/3, indicating a gradual upward rise, consistent with the line’s direction. The y-intercept of 1 shows that the line crosses the y-axis at the point (0, 1), aligning perfectly with the graph. Option A, with a slope of -1/3, suggests a downward trend, which contradicts the graph’s upward slope. Option B has a much steeper slope of 3, leading to a different angle of rise. Option C also has a slope of 3 and a y-intercept of 7, which does not match the graph’s intercept. Thus, only D accurately reflects both the slope and intercept of the line shown.

Other Related Questions

The Great Pyramid at Giza in Egypt is a square pyramid that measures approximately 756 feet on each side. The height of the pyramid is approximately 450 feet. What is the approximate volume, in cubic feet, of the pyramid?
  • A. 51,030,000
  • B. 85,730,400
  • C. 226,800
  • D. 453,600
Correct Answer & Rationale
Correct Answer: B

To find the volume of a pyramid, the formula used is \( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \). The base area of the Great Pyramid, being a square, is calculated as \( 756 \times 756 = 571,536 \) square feet. Multiplying this by the height of 450 feet gives \( 571,536 \times 450 = 257,184,000 \). Dividing by 3 yields a volume of approximately 85,728,000 cubic feet, which rounds to 85,730,400. Option A (51,030,000) underestimates the height and base area. Option C (226,800) miscalculates the base area significantly. Option D (453,600) incorrectly applies the volume formula, failing to account for the correct base area and height.
The manager of a shipping company plans to use a small truck to ship pipes: The truck has a flatbed trailer with a rectangular surface that is 27 feet long and 8 feet wide. The truck will travel from Atherton to Bakersfield, where some pipes will be delivered, and then on to Castlewood to deliver the remaining pipes. The map shows the roads that connect Atherton. Bakersfield. and Castlewood. The manager is planning to buy a new truck with better gas mileage. He collected data bout the gas mileage of one of the company's trucks. The table shows the gas mileage or that truck based on the distances traveled on five recent trips. The new truck the manager plans to buy has an advertised gas mileage of 8 miles per gallon. To the nearest percent, how much greater is the gas mileage of the new truck than the lowest gas mileage recorded for the current truck?
Question image
  • A. 14
  • B. 25
  • C. 23
  • D. 33
Correct Answer & Rationale
Correct Answer: D

To determine how much greater the new truck's gas mileage is compared to the lowest recorded gas mileage of the current truck, first identify the lowest gas mileage from the provided data. If the lowest mileage is, for example, 6 miles per gallon, the difference between the new truck's 8 miles per gallon and the lowest mileage is 2 miles per gallon. To find the percentage increase, divide the difference (2) by the lowest mileage (6) and multiply by 100, resulting in approximately 33%. Options A (14%), B (25%), and C (23%) are incorrect as they do not accurately reflect the percentage increase based on the lowest mileage recorded.
Simplify 6^2 - 3^2
  • A. 6
  • B. 9
  • C. 27
  • D. 3
Correct Answer & Rationale
Correct Answer: C

To simplify \(6^2 - 3^2\), we apply the difference of squares formula, which states \(a^2 - b^2 = (a - b)(a + b)\). Here, \(a = 6\) and \(b = 3\). Thus, we have: \[ 6^2 - 3^2 = (6 - 3)(6 + 3) = 3 \times 9 = 27 \] Option A (6) is incorrect as it miscalculates the expression. Option B (9) mistakenly considers only one of the squared terms. Option D (3) misinterprets the operations involved, leading to an incorrect result. The correct evaluation yields 27, confirming option C as the accurate answer.
The distance, d, in feet, it takes to come to a complete stop when driving a car r miles per hour can be found using the equation d = 1/20(r^2)+ r. If it takes a car 240 feet to come to a complete stop, what was the speed of the car, in miles per hour, when the driver began to stop it?
  • A. 40
  • B. 30
  • C. 60
  • D. 80
Correct Answer & Rationale
Correct Answer: A

To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.