Which expression is equivalent to (3a + 4ab - 7b) - (a + 2ab - 4b)?
- A. 2a + 2ab - 11b
- B. 2a + 6ab - 11b
- C. 2a + 2ab - 3b
- D. 2a + 6ab - 35
Correct Answer & Rationale
Correct Answer: C
To simplify the expression \((3a + 4ab - 7b) - (a + 2ab - 4b)\), start by distributing the negative sign across the second set of parentheses: \[ 3a + 4ab - 7b - a - 2ab + 4b \] Next, combine like terms: - For \(a\): \(3a - a = 2a\) - For \(ab\): \(4ab - 2ab = 2ab\) - For \(b\): \(-7b + 4b = -3b\) This results in the expression \(2a + 2ab - 3b\), matching option C. Option A introduces an incorrect coefficient for \(b\), while option B miscalculates the \(ab\) term. Option D incorrectly combines terms, leading to an erroneous constant. Thus, option C is the only accurate simplification.
To simplify the expression \((3a + 4ab - 7b) - (a + 2ab - 4b)\), start by distributing the negative sign across the second set of parentheses: \[ 3a + 4ab - 7b - a - 2ab + 4b \] Next, combine like terms: - For \(a\): \(3a - a = 2a\) - For \(ab\): \(4ab - 2ab = 2ab\) - For \(b\): \(-7b + 4b = -3b\) This results in the expression \(2a + 2ab - 3b\), matching option C. Option A introduces an incorrect coefficient for \(b\), while option B miscalculates the \(ab\) term. Option D incorrectly combines terms, leading to an erroneous constant. Thus, option C is the only accurate simplification.
Other Related Questions
How many more tickets did Larry buy than Jim?
- A. 3
- B. 12
- C. 6
- D. 1
Correct Answer & Rationale
Correct Answer: C
To determine how many more tickets Larry bought than Jim, we need to compare their ticket purchases. If Larry bought 9 tickets and Jim bought 3, the difference is 9 - 3 = 6. Option A (3) is incorrect because it underestimates the difference. Option B (12) is too high, suggesting Larry bought significantly more than he actually did. Option D (1) also miscalculates the difference, indicating a minimal discrepancy. Thus, the accurate difference of 6 aligns with option C, reflecting the true number of tickets Larry purchased over Jim.
To determine how many more tickets Larry bought than Jim, we need to compare their ticket purchases. If Larry bought 9 tickets and Jim bought 3, the difference is 9 - 3 = 6. Option A (3) is incorrect because it underestimates the difference. Option B (12) is too high, suggesting Larry bought significantly more than he actually did. Option D (1) also miscalculates the difference, indicating a minimal discrepancy. Thus, the accurate difference of 6 aligns with option C, reflecting the true number of tickets Larry purchased over Jim.
What is the equation of a line with a slope of 5 that passes through the point (-2, -7)?
- A. y=5x+3
- B. y=5x-3
- C. y=5x-17
- D. y=5x+17
Correct Answer & Rationale
Correct Answer: C
To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
At what point does the function stop decreasing and start increasing?
- A. (1, -4)
- B. (3, 0)
- C. (-4, 1)
- D. (0, -3)
Correct Answer & Rationale
Correct Answer: A
To determine where the function stops decreasing and starts increasing, we look for a local minimum, which occurs where the derivative changes from negative to positive. Option A: (1, -4) indicates a point where the function transitions from decreasing to increasing, making it a local minimum. Option B: (3, 0) does not represent a minimum; the function is still increasing here. Option C: (-4, 1) is not relevant to the transition, as it does not indicate a change in direction. Option D: (0, -3) also does not represent a point of change, as the function continues to decrease. Thus, A is the point where the function stops decreasing and begins to increase.
To determine where the function stops decreasing and starts increasing, we look for a local minimum, which occurs where the derivative changes from negative to positive. Option A: (1, -4) indicates a point where the function transitions from decreasing to increasing, making it a local minimum. Option B: (3, 0) does not represent a minimum; the function is still increasing here. Option C: (-4, 1) is not relevant to the transition, as it does not indicate a change in direction. Option D: (0, -3) also does not represent a point of change, as the function continues to decrease. Thus, A is the point where the function stops decreasing and begins to increase.
Which graph represents the equation x - 2y = 4?
- A. M-58A.png
- B. M-58B.png
- C. M-58C.png
- D. M-58D.png
Correct Answer & Rationale
Correct Answer: A
To determine which graph represents the equation \( x - 2y = 4 \), we can rearrange it into slope-intercept form: \( y = \frac{1}{2}x - 2 \). This indicates a slope of \( \frac{1}{2} \) and a y-intercept at \( -2 \). Option A accurately reflects these characteristics, showing a line that rises gradually and crosses the y-axis at \( -2 \). Options B, C, and D do not have the correct slope or y-intercept. B has a steeper slope, C slopes downward, and D does not intersect the y-axis at the correct point. Thus, only Option A is consistent with the equation's graph.
To determine which graph represents the equation \( x - 2y = 4 \), we can rearrange it into slope-intercept form: \( y = \frac{1}{2}x - 2 \). This indicates a slope of \( \frac{1}{2} \) and a y-intercept at \( -2 \). Option A accurately reflects these characteristics, showing a line that rises gradually and crosses the y-axis at \( -2 \). Options B, C, and D do not have the correct slope or y-intercept. B has a steeper slope, C slopes downward, and D does not intersect the y-axis at the correct point. Thus, only Option A is consistent with the equation's graph.