ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds. The graphs show information about the top 10 runners. Type your answer in the boxes. You may use numbers and/or a negative sign (-) in your answer. A total of 42 runners dropped out before finishing the race. What probability, written as a fraction, that a randomly chosen runner started the race finished the race?
Question image
Correct Answer & Rationale
Correct Answer: 583/625

To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.

Other Related Questions

Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds. The graphs show information about the top 10 runners. Based on the scatter plot, what is the range of ages of the top 10 runners?
Question image
  • A. 9
  • B. 1
  • C. 16
  • D. 40
Correct Answer & Rationale
Correct Answer: C

The range of ages is determined by subtracting the youngest runner's age from the oldest runner's age. In this case, the scatter plot indicates that the youngest runner is 16 years old and the oldest is 32 years old. Thus, the range is 32 - 16 = 16 years. Option A (9) incorrectly suggests a smaller age difference, while B (1) implies almost no age variation, neither of which aligns with the data presented. Option D (40) overestimates the age range, indicating a misunderstanding of the plotted values. Therefore, the accurate calculation of 16 years reflects the true age span of the top 10 runners.
Multiply (5x - 1)(5x - 1)
  • A. 25x^2 + 1
  • B. 25x^2 - 1
  • C. 25x^2 - 2x + 1
  • D. 25x^2 - 10x + 1
Correct Answer & Rationale
Correct Answer: D

To find the product of (5x - 1)(5x - 1), we can use the formula for squaring a binomial, which states that (a - b)² = a² - 2ab + b². Here, a = 5x and b = 1. Calculating this gives: - a² = (5x)² = 25x² - 2ab = 2(5x)(1) = 10x - b² = 1² = 1 Thus, the expanded form is 25x² - 10x + 1, matching option D. Option A (25x² + 1) incorrectly omits the linear term. Option B (25x² - 1) miscalculates the constant term. Option C (25x² - 2x + 1) incorrectly computes the coefficient of the x term. Each of these options fails to accurately reflect the multiplication of the binomials.
At a local bank, certificates of deposit (CDs) mature every 9 months. At another bank, CDs mature every 12 months. If CDs are purchased on the same day at each bank and are renewed when they mature, what is the least number of months that will pass before the two banks' CDs are mature at the same time?
  • A. 72
  • B. 36
  • C. 108
  • D. 3
Correct Answer & Rationale
Correct Answer: B

To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
Ricardo has two bank accounts. Each month, he will withdraw a certain amount of money from the first account and deposit a different amount of money into the second account. The inequality 8,000 – 200x ? 5,000 + 300x can be solved to find the number of months, x, for which the account has more money than the second account. What is the solution to this inequality?
  • A. x ? 6
  • B. x ? 30
  • C. x ? 30
  • D. x ? 6
Correct Answer & Rationale
Correct Answer: D

To solve the inequality \( 8,000 - 200x > 5,000 + 300x \), we first isolate \( x \). Rearranging gives \( 8,000 - 5,000 > 300x + 200x \), simplifying to \( 3,000 > 500x \). Dividing by 500 results in \( x < 6 \). Thus, the solution indicates that for \( x \) to ensure the first account has more money, it must be less than 6 months. Option A incorrectly states \( x \geq 6 \), which contradicts the solution. Options B and C mistakenly suggest \( x \geq 30 \), which is not relevant to the problem.