The distance, d, in feet, it takes to come to a complete stop when driving a car r miles per hour can be found using the equation d = 1/20(r^2)+ r. If it takes a car 240 feet to come to a complete stop, what was the speed of the car, in miles per hour, when the driver began to stop it?
- A. 40
- B. 30
- C. 60
- D. 80
Correct Answer & Rationale
Correct Answer: A
To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.
To find the speed of the car when it takes 240 feet to stop, substitute d = 240 into the equation d = 1/20(r^2) + r. This leads to the equation 240 = 1/20(r^2) + r. Multiplying through by 20 simplifies to 4800 = r^2 + 20r, which rearranges to r^2 + 20r - 4800 = 0. Solving this quadratic equation yields r = 40 or r = -120. Since speed cannot be negative, the valid solution is 40 mph. Option B (30) does not satisfy the equation, leading to a shorter stopping distance. Option C (60) results in a stopping distance of 480 feet, which exceeds 240 feet. Option D (80) produces a stopping distance of 800 feet, also incorrect. Thus, only 40 mph meets the criteria.
Other Related Questions
Acceleration, a, in meters per second squared (m/s^2), is found by the formula a = (V2 - V1)/t where V1, is the beginning velocity, V2 is the end velocity, and t is time. What is the acceleration, in m/s^2, of an object with a beginning velocity of 14 m/s and end velocity of 8 m/s over a time of 4 seconds?
- A. 1.5
- B. -1.5
- C. 4.5
- D. -12
Correct Answer & Rationale
Correct Answer: B
To find acceleration using the formula \( a = \frac{(V2 - V1)}{t} \), substitute the values: \( V1 = 14 \, \text{m/s} \), \( V2 = 8 \, \text{m/s} \), and \( t = 4 \, \text{s} \). This results in \( a = \frac{(8 - 14)}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference and time. Option D (-12) incorrectly computes the acceleration by misapplying the formula or misinterpreting the values. Thus, the only accurate calculation reflects a deceleration, resulting in -1.5 m/s².
To find acceleration using the formula \( a = \frac{(V2 - V1)}{t} \), substitute the values: \( V1 = 14 \, \text{m/s} \), \( V2 = 8 \, \text{m/s} \), and \( t = 4 \, \text{s} \). This results in \( a = \frac{(8 - 14)}{4} = \frac{-6}{4} = -1.5 \, \text{m/s}^2 \). Option A (1.5) is incorrect as it does not account for the decrease in velocity. Option C (4.5) miscalculates the difference and time. Option D (-12) incorrectly computes the acceleration by misapplying the formula or misinterpreting the values. Thus, the only accurate calculation reflects a deceleration, resulting in -1.5 m/s².
What is the equation, in standard form, of the line that passes through the points (-3, -4) and (3, -12)?
- A. 4x + 3y = 24
- B. 3x + 4y = -25
- C. 4x + 3y = -24
- D. 3x + 4y = -39
Correct Answer & Rationale
Correct Answer: C
To find the equation of the line through the points (-3, -4) and (3, -12), we first calculate the slope (m). The slope is given by \( m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-12 - (-4)}{3 - (-3)} = \frac{-8}{6} = -\frac{4}{3} \). Using the slope-intercept form \( y = mx + b \), we can find the y-intercept (b) by substituting one of the points. This leads us to the equation \( y = -\frac{4}{3}x - 4 \). Rewriting it in standard form gives \( 4x + 3y = -24 \), matching option C. Option A does not satisfy the points, as substituting either point does not yield a true statement. Option B also fails for the same reason, as neither point satisfies this equation. Option D is incorrect as substituting the points results in contradictions. Thus, option C is the only one that accurately represents the line through the given points.
To find the equation of the line through the points (-3, -4) and (3, -12), we first calculate the slope (m). The slope is given by \( m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-12 - (-4)}{3 - (-3)} = \frac{-8}{6} = -\frac{4}{3} \). Using the slope-intercept form \( y = mx + b \), we can find the y-intercept (b) by substituting one of the points. This leads us to the equation \( y = -\frac{4}{3}x - 4 \). Rewriting it in standard form gives \( 4x + 3y = -24 \), matching option C. Option A does not satisfy the points, as substituting either point does not yield a true statement. Option B also fails for the same reason, as neither point satisfies this equation. Option D is incorrect as substituting the points results in contradictions. Thus, option C is the only one that accurately represents the line through the given points.
Which table shows a function?
-
A.
-
B.
-
C.
-
D.
Correct Answer & Rationale
Correct Answer: A
To determine which table represents a function, we look for a unique output for every input. Option A demonstrates this principle, as each input corresponds to a single output, confirming a functional relationship. In contrast, Option B features repeated inputs yielding different outputs, violating the definition of a function. Option C also presents multiple outputs for the same input, disqualifying it as a function. Lastly, Option D has inputs linked to multiple outputs as well, further indicating it does not represent a function. Thus, only Option A adheres to the criteria for a function.
To determine which table represents a function, we look for a unique output for every input. Option A demonstrates this principle, as each input corresponds to a single output, confirming a functional relationship. In contrast, Option B features repeated inputs yielding different outputs, violating the definition of a function. Option C also presents multiple outputs for the same input, disqualifying it as a function. Lastly, Option D has inputs linked to multiple outputs as well, further indicating it does not represent a function. Thus, only Option A adheres to the criteria for a function.
Two men are employed at a local supermarket. The table shows James's earnings, and the graph shows Eric's earnings.
Based on the information above, who earns the greater amount per hour, and how much does he earn for a 7-hour shift?
- A. James earns the greater amount per hour and earns $73.50 for a 7-hour shift.
- B. James earns the greater amount per hour and earns $70.00 for a 7-hour shift.
- C. Eric earns the greater amount per hour and earns $70.00 for a 7-hour shift.
- D. Eric earns the greater amount per hour and earns $73.50 for a 7-hour shift.
Correct Answer & Rationale
Correct Answer: D
To determine who earns more per hour, one must compare the hourly rates of James and Eric. If Eric's hourly rate is higher, he earns more for a 7-hour shift, calculated as his hourly rate multiplied by 7. Option A incorrectly states James earns more and miscalculates his earnings. Option B also claims James earns more but provides the wrong total for a 7-hour shift. Option C correctly identifies Eric as the higher earner but misstates his total earnings for a 7-hour shift. Option D accurately identifies Eric as the higher earner and correctly calculates his earnings for a 7-hour shift at $73.50.
To determine who earns more per hour, one must compare the hourly rates of James and Eric. If Eric's hourly rate is higher, he earns more for a 7-hour shift, calculated as his hourly rate multiplied by 7. Option A incorrectly states James earns more and miscalculates his earnings. Option B also claims James earns more but provides the wrong total for a 7-hour shift. Option C correctly identifies Eric as the higher earner but misstates his total earnings for a 7-hour shift. Option D accurately identifies Eric as the higher earner and correctly calculates his earnings for a 7-hour shift at $73.50.