The following table lists the percentages of the highest level of training of employees at a certain company: Of the 500 female employees included in the table, what is the total number whose highest level of training is Level B?
- A. 100
- B. 150
- C. 200
- D. 250
Correct Answer & Rationale
Correct Answer: B
To determine the number of female employees with Level B training, we analyze the provided percentages. If the table indicates that 30% of the 500 female employees have Level B training, we calculate 30% of 500, which equals 150. Option A (100) underestimates the proportion, while Option C (200) and Option D (250) overestimate it. Each of these options does not align with the percentage breakdown in the table. Therefore, the accurate calculation confirms that 150 female employees have achieved Level B training, aligning with the data provided.
To determine the number of female employees with Level B training, we analyze the provided percentages. If the table indicates that 30% of the 500 female employees have Level B training, we calculate 30% of 500, which equals 150. Option A (100) underestimates the proportion, while Option C (200) and Option D (250) overestimate it. Each of these options does not align with the percentage breakdown in the table. Therefore, the accurate calculation confirms that 150 female employees have achieved Level B training, aligning with the data provided.
Other Related Questions
A medium-sized grain of sand can be approximated as a cube with an edge length of 5×10â»â´ meters. Which expression best represents the number of medium-sized sand grains that could be lined up side by side to result in a total length of 1 meter?
- A. 2×10³
- B. 2×10â´
- C. 2×10âµ
- D. 5×10³
- E. 5×10â´
Correct Answer & Rationale
Correct Answer: B
To determine how many medium-sized sand grains can be lined up to equal 1 meter, we first calculate the volume of one grain, approximated as a cube with an edge length of 5×10⁻⁴ meters. The length of one grain is 5×10⁻⁴ meters. To find the number of grains in 1 meter, divide 1 meter (1×10⁰) by the length of one grain: 1×10⁰ / 5×10⁻⁴ = 2×10³. Thus, option B (2×10³) accurately represents the number of grains. Options A (2×10³) and D (5×10³) are incorrect due to miscalculating the division. Option C (2×10⁻) and E (5×10⁵) misrepresent the scale entirely, either by underestimating or overestimating the number of grains.
To determine how many medium-sized sand grains can be lined up to equal 1 meter, we first calculate the volume of one grain, approximated as a cube with an edge length of 5×10⁻⁴ meters. The length of one grain is 5×10⁻⁴ meters. To find the number of grains in 1 meter, divide 1 meter (1×10⁰) by the length of one grain: 1×10⁰ / 5×10⁻⁴ = 2×10³. Thus, option B (2×10³) accurately represents the number of grains. Options A (2×10³) and D (5×10³) are incorrect due to miscalculating the division. Option C (2×10⁻) and E (5×10⁵) misrepresent the scale entirely, either by underestimating or overestimating the number of grains.
What is the sum of the two polynomials? 4x² + 3x + 5 + x² + 6x - 3?
- A. 4x² + 9x + 2
- B. 5x² + 9x + 2
- C. 5x² + 9x + 8
- D. 4x² + 9x² + 2
- E. 5x² + 9x² + 8
Correct Answer & Rationale
Correct Answer: B
To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
Emma measured the height of her laptop screen. She reported the height as 8 inches, accurate to the nearest inch. The actual height of the screen must be:
- A. at least 7.5 inches and less than 8.5 inches
- B. at least 7.9 inches and less than 8.1 inches
- C. at least 7.99 inches and less than 8.01 inches
- D. at least 8 inches
- E. exactly 8 inches
Correct Answer & Rationale
Correct Answer: A
When measuring to the nearest inch, values can range from halfway to the next whole number. For Emma's reported height of 8 inches, this means the actual height must be at least 7.5 inches (inclusive) and less than 8.5 inches (exclusive). Option B is too narrow, only allowing for heights between 7.9 and 8.1 inches, which does not encompass all possible values. Option C is even more restrictive, only allowing for heights between 7.99 and 8.01 inches, excluding valid measurements. Option D is incorrect as it suggests the height must be 8 inches or more, which is too limiting. Option E incorrectly states the height must be exactly 8 inches, disregarding the range of possible values.
When measuring to the nearest inch, values can range from halfway to the next whole number. For Emma's reported height of 8 inches, this means the actual height must be at least 7.5 inches (inclusive) and less than 8.5 inches (exclusive). Option B is too narrow, only allowing for heights between 7.9 and 8.1 inches, which does not encompass all possible values. Option C is even more restrictive, only allowing for heights between 7.99 and 8.01 inches, excluding valid measurements. Option D is incorrect as it suggests the height must be 8 inches or more, which is too limiting. Option E incorrectly states the height must be exactly 8 inches, disregarding the range of possible values.
In tennis, a player has two chances to serve the ball successfully. Tamara is successful 70% of the time on her first serve. Tamara is successful 80% of the time on her second serve. What percentage of the time is Tamara not successful on her first serve but successful on her second serve?
- A. 5%
- B. 14%
- C. 24%
- D. 50%
- E. 56%
Correct Answer & Rationale
Correct Answer: B
To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.
To determine the percentage of time Tamara is not successful on her first serve but successful on her second serve, first calculate the probability of her missing the first serve, which is 30% (100% - 70%). Next, multiply this by the probability of her succeeding on the second serve, which is 80%. Thus, the calculation is 0.30 (failure on first serve) x 0.80 (success on second serve) = 0.24, or 24%. Option A (5%) underestimates the failure rate. Option C (24%) is the correct calculation but misrepresents the context. Option D (50%) assumes equal success rates, which is inaccurate. Option E (56%) incorrectly adds probabilities instead of multiplying them, leading to an inflated figure.