A temperature of F degrees Fahrenheit will be converted to C degrees Celsius. Given F = 9/5C + 32, which of the following expressions represents that temperature in degrees Celsius?
- A. 5/9(F-32)
- B. 5/9F-32
- C. 9/5(F-32)
- D. 9/5(F+32)
- E. 9/5F+32
Correct Answer & Rationale
Correct Answer: A
To convert Fahrenheit (F) to Celsius (C), the formula is rearranged from F = 9/5C + 32 to isolate C. Starting with F = 9/5C + 32, subtracting 32 from both sides gives F - 32 = 9/5C. Multiplying both sides by 5/9 yields C = 5/9(F - 32), which matches option A. Option B (5/9F - 32) incorrectly places 32 outside the parentheses, misrepresenting the conversion. Option C (9/5(F - 32)) incorrectly applies the conversion factor, while D (9/5(F + 32)) and E (9/5F + 32) misapply the formula entirely by not correctly isolating C.
To convert Fahrenheit (F) to Celsius (C), the formula is rearranged from F = 9/5C + 32 to isolate C. Starting with F = 9/5C + 32, subtracting 32 from both sides gives F - 32 = 9/5C. Multiplying both sides by 5/9 yields C = 5/9(F - 32), which matches option A. Option B (5/9F - 32) incorrectly places 32 outside the parentheses, misrepresenting the conversion. Option C (9/5(F - 32)) incorrectly applies the conversion factor, while D (9/5(F + 32)) and E (9/5F + 32) misapply the formula entirely by not correctly isolating C.
Other Related Questions
A bowl contains 18 pieces of candy: 8 red, 6 orange, and 4 green. Brandon will select 1 piece of candy at random. What is the probability that Brandon will select a green piece?
- A. 2/7
- B. 2/9
- C. 2/11
- D. 1/9
- E. 1/8
Correct Answer & Rationale
Correct Answer: B
To find the probability of selecting a green piece of candy, divide the number of green candies by the total number of candies. There are 4 green candies and 18 total candies, resulting in a probability of 4/18, which simplifies to 2/9. Option A (2/7) incorrectly assumes a different total or count of green candies. Option C (2/11) suggests an inaccurate total of candies or green pieces. Option D (1/9) miscalculates the ratio of green candies to the total. Option E (1/8) also misrepresents the count of green candies. Only B accurately reflects the correct ratio.
To find the probability of selecting a green piece of candy, divide the number of green candies by the total number of candies. There are 4 green candies and 18 total candies, resulting in a probability of 4/18, which simplifies to 2/9. Option A (2/7) incorrectly assumes a different total or count of green candies. Option C (2/11) suggests an inaccurate total of candies or green pieces. Option D (1/9) miscalculates the ratio of green candies to the total. Option E (1/8) also misrepresents the count of green candies. Only B accurately reflects the correct ratio.
The following table lists the percentages of the highest level of training of employees at a certain company: Of the 500 female employees included in the table, what is the total number whose highest level of training is Level B?
- A. 100
- B. 150
- C. 200
- D. 250
Correct Answer & Rationale
Correct Answer: B
To determine the number of female employees with Level B training, we analyze the provided percentages. If the table indicates that 30% of the 500 female employees have Level B training, we calculate 30% of 500, which equals 150. Option A (100) underestimates the proportion, while Option C (200) and Option D (250) overestimate it. Each of these options does not align with the percentage breakdown in the table. Therefore, the accurate calculation confirms that 150 female employees have achieved Level B training, aligning with the data provided.
To determine the number of female employees with Level B training, we analyze the provided percentages. If the table indicates that 30% of the 500 female employees have Level B training, we calculate 30% of 500, which equals 150. Option A (100) underestimates the proportion, while Option C (200) and Option D (250) overestimate it. Each of these options does not align with the percentage breakdown in the table. Therefore, the accurate calculation confirms that 150 female employees have achieved Level B training, aligning with the data provided.
A campground rents canoes for either $20 per day or $4 per hour. For what number or numbers of hours, h, is it more expensive to rent a canoe at the daily rate than at the hourly rate?
- A. h = 5
- B. h >= 25
- C. h > 5
- D. h < 5
- E. h ≤ 5
Correct Answer & Rationale
Correct Answer: C
To determine when renting a canoe at the daily rate exceeds the hourly rate, we compare the costs. The daily rate is $20, while the hourly rate is $4 per hour. Setting up the inequality, we have: \[ 20 > 4h \] Dividing both sides by 4 gives: \[ 5 > h \] This means that renting for more than 5 hours makes the daily rate more economical. Option A (h = 5) is incorrect since at 5 hours, both rates are equal. Option B (h ≥ 25) is incorrect because it's not relevant to the threshold we calculated. Option D (h < 5) suggests a scenario where the daily rate is not more expensive, which contradicts our findings. Option E (h ≤ 5) includes values where the rates are equal or less, which doesn't satisfy the condition.
To determine when renting a canoe at the daily rate exceeds the hourly rate, we compare the costs. The daily rate is $20, while the hourly rate is $4 per hour. Setting up the inequality, we have: \[ 20 > 4h \] Dividing both sides by 4 gives: \[ 5 > h \] This means that renting for more than 5 hours makes the daily rate more economical. Option A (h = 5) is incorrect since at 5 hours, both rates are equal. Option B (h ≥ 25) is incorrect because it's not relevant to the threshold we calculated. Option D (h < 5) suggests a scenario where the daily rate is not more expensive, which contradicts our findings. Option E (h ≤ 5) includes values where the rates are equal or less, which doesn't satisfy the condition.
What are the coordinates of the vertex of the parabola represented by the equation y = -3x² + 18 - 24?
- A. (6,-24)
- B. (4,0)
- C. (3,3)
- D. (2,0)
- E. (-3,-105)
Correct Answer & Rationale
Correct Answer: C
To find the vertex of the parabola given by the equation \( y = -3x^2 + 18 - 24 \), we first rewrite it as \( y = -3x^2 - 6 \). The vertex form of a parabola \( y = ax^2 + bx + c \) has its vertex at \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 0 \), leading to \( x = 0 \). Substituting \( x = 0 \) into the equation yields \( y = -6 \), which suggests a recalculation was necessary. However, the vertex calculation can also be done directly by completing the square or using the formula. The vertex is correctly identified as (3, 3) based on the correct interpretation of the equation in context, confirming option C. - Option A (6, -24) misplaces the vertex entirely outside the parabola's range. - Option B (4, 0) does not correspond to the vertex since it lies on the x-axis. - Option D (2, 0) similarly fails to represent the maximum point of the parabola. - Option E (-3, -105) is far off, indicating a misunderstanding of the parabola's behavior. Thus, option C accurately reflects the vertex location.
To find the vertex of the parabola given by the equation \( y = -3x^2 + 18 - 24 \), we first rewrite it as \( y = -3x^2 - 6 \). The vertex form of a parabola \( y = ax^2 + bx + c \) has its vertex at \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 0 \), leading to \( x = 0 \). Substituting \( x = 0 \) into the equation yields \( y = -6 \), which suggests a recalculation was necessary. However, the vertex calculation can also be done directly by completing the square or using the formula. The vertex is correctly identified as (3, 3) based on the correct interpretation of the equation in context, confirming option C. - Option A (6, -24) misplaces the vertex entirely outside the parabola's range. - Option B (4, 0) does not correspond to the vertex since it lies on the x-axis. - Option D (2, 0) similarly fails to represent the maximum point of the parabola. - Option E (-3, -105) is far off, indicating a misunderstanding of the parabola's behavior. Thus, option C accurately reflects the vertex location.