The average of 4 numbers is 9. If one of the numbers is 7, what is the sum of the other 3 numbers?
- A. 2
- B. 12
- C. 29
- D. 36
Correct Answer & Rationale
Correct Answer: C
To find the sum of the other three numbers, start by calculating the total sum of all four numbers. Since the average is 9, multiply this by 4, yielding a total of 36. Given that one of the numbers is 7, subtract this from the total: 36 - 7 = 29. Therefore, the sum of the other three numbers is 29. Option A (2) is too low, as it does not account for the total sum needed. Option B (12) underestimates the remaining numbers. Option D (36) mistakenly includes the known number, rather than calculating the sum of the others.
To find the sum of the other three numbers, start by calculating the total sum of all four numbers. Since the average is 9, multiply this by 4, yielding a total of 36. Given that one of the numbers is 7, subtract this from the total: 36 - 7 = 29. Therefore, the sum of the other three numbers is 29. Option A (2) is too low, as it does not account for the total sum needed. Option B (12) underestimates the remaining numbers. Option D (36) mistakenly includes the known number, rather than calculating the sum of the others.
Other Related Questions
A shirt is on sale for 15 percent off the original price of x dollars. If a customer has a coupon for 5 dollars off the sale price, which of the following represents the price, in dollars, the customer will pay, excluding tax, for the shirt?
- A. 0.15x-5
- B. 0.85x -5
- C. 0.85(x-5)
- D. 5-0.85x
Correct Answer & Rationale
Correct Answer: B
To determine the price a customer pays after applying both discounts, start with the original price, x. A 15% discount reduces the price to 85% of the original, calculated as 0.85x. After this, the customer applies a $5 coupon, leading to the final price of 0.85x - 5. Option A (0.15x - 5) incorrectly calculates the discount as a direct subtraction from the original price, misrepresenting the order of operations. Option C (0.85(x - 5)) mistakenly applies the coupon before calculating the discount, which is not the correct sequence. Option D (5 - 0.85x) suggests a negative price, which is nonsensical in this context.
To determine the price a customer pays after applying both discounts, start with the original price, x. A 15% discount reduces the price to 85% of the original, calculated as 0.85x. After this, the customer applies a $5 coupon, leading to the final price of 0.85x - 5. Option A (0.15x - 5) incorrectly calculates the discount as a direct subtraction from the original price, misrepresenting the order of operations. Option C (0.85(x - 5)) mistakenly applies the coupon before calculating the discount, which is not the correct sequence. Option D (5 - 0.85x) suggests a negative price, which is nonsensical in this context.
Which of the following is a factor of x ^ 3 * y ^ 3 + x * y ^ 5 ?
- A. x ^ 3 - y ^ 3
- B. x ^ 3 + y ^ 3
- C. x ^ 2 + y ^ 2
- D. x + y
Correct Answer & Rationale
Correct Answer: C
To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.
To determine the factors of the expression \(x^3y^3 + xy^5\), we can factor out the common term \(xy^3\), yielding \(xy^3(x^2 + y^2)\). Option A, \(x^3 - y^3\), represents a difference of cubes and does not apply here. Option B, \(x^3 + y^3\), is a sum of cubes, which is not a factor of the given expression. Option D, \(x + y\), does not appear in the factorization derived from the original expression. Thus, \(x^2 + y^2\) is the only viable factor, confirming its role in the factorization of the expression.
A bowl contains 6 green grapes, 10 red grapes, and 8 black grapes.Which of the following is the correct calculation for the probability of choosing a red grape and then without putting the red grape back into the bowl, choosing a green grape?
- A. 10/24+6/24
- B. 10/24+6/23
- C. 10/24*6/24
- D. 10/24*6/23
Correct Answer & Rationale
Correct Answer: D
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
Which of the following could be the function graphed above?
- A. f(x)=x+1
- B. f(x)=x-1
- C. f(x)=|x|+1
- D. f(x)=x-1
Correct Answer & Rationale
Correct Answer: C
Option C, \( f(x) = |x| + 1 \), accurately represents a V-shaped graph that opens upwards, with its vertex at (0, 1). This aligns with the characteristics of the graph shown. Option A, \( f(x) = x + 1 \), is a linear function with a slope of 1, resulting in a straight line, which does not match the V-shape. Option B, \( f(x) = x - 1 \), is another linear function with a slope of 1, also producing a straight line that does not fit the graph. Option D, \( f(x) = x - 1 \), is identical to Option B and shares the same linear characteristics, further confirming it cannot represent the V-shaped graph.
Option C, \( f(x) = |x| + 1 \), accurately represents a V-shaped graph that opens upwards, with its vertex at (0, 1). This aligns with the characteristics of the graph shown. Option A, \( f(x) = x + 1 \), is a linear function with a slope of 1, resulting in a straight line, which does not match the V-shape. Option B, \( f(x) = x - 1 \), is another linear function with a slope of 1, also producing a straight line that does not fit the graph. Option D, \( f(x) = x - 1 \), is identical to Option B and shares the same linear characteristics, further confirming it cannot represent the V-shaped graph.