Liz spent 1/2, 1/3, 1/4, $15 left. Birthday money?
- A. $360
- B. $180
- C. $120
- D. $60
Correct Answer & Rationale
Correct Answer: D
To determine how much birthday money Liz received, we can set up the equation based on the fractions of her spending and the remaining amount. Let \( x \) represent the total birthday money. She spent \( \frac{1}{2}x + \frac{1}{3}x + \frac{1}{4}x + 15 = x \). Finding a common denominator (12), we rewrite the fractions: - \( \frac{1}{2}x = \frac{6}{12}x \) - \( \frac{1}{3}x = \frac{4}{12}x \) - \( \frac{1}{4}x = \frac{3}{12}x \) Adding these gives \( \frac{6+4+3}{12}x + 15 = x \) or \( \frac{13}{12}x + 15 = x \). Rearranging yields \( 15 = x - \frac{13}{12}x \), simplifying to \( 15 = \frac{1}{12}x \). Therefore, \( x = 180 \). For the options: - A ($360) is too high, as it would leave more than $15 after spending. - B ($180) results in no remaining amount after spending. - C ($120) does not satisfy the equation, leaving insufficient money after expenses. - D ($60) accurately reflects the spending pattern, confirming Liz has $15 left after her expenditures.
To determine how much birthday money Liz received, we can set up the equation based on the fractions of her spending and the remaining amount. Let \( x \) represent the total birthday money. She spent \( \frac{1}{2}x + \frac{1}{3}x + \frac{1}{4}x + 15 = x \). Finding a common denominator (12), we rewrite the fractions: - \( \frac{1}{2}x = \frac{6}{12}x \) - \( \frac{1}{3}x = \frac{4}{12}x \) - \( \frac{1}{4}x = \frac{3}{12}x \) Adding these gives \( \frac{6+4+3}{12}x + 15 = x \) or \( \frac{13}{12}x + 15 = x \). Rearranging yields \( 15 = x - \frac{13}{12}x \), simplifying to \( 15 = \frac{1}{12}x \). Therefore, \( x = 180 \). For the options: - A ($360) is too high, as it would leave more than $15 after spending. - B ($180) results in no remaining amount after spending. - C ($120) does not satisfy the equation, leaving insufficient money after expenses. - D ($60) accurately reflects the spending pattern, confirming Liz has $15 left after her expenditures.
Other Related Questions
3 in 321,745 vs 4,631?
- A. 100
- B. 1000
- C. 10000
- D. 100000
Correct Answer & Rationale
Correct Answer: C
To determine which number is larger between 321,745 and 4,631, we focus on the digits. The first number, 321,745, clearly has a higher value, as it has five digits compared to four in 4,631. Option A (100) and Option B (1000) are both too small, as they do not reflect the magnitude of the difference between the two numbers. Option D (100,000) is also incorrect, as it exceeds the value of 321,745. Choosing 10,000 accurately represents the scale of comparison, highlighting that 321,745 is significantly larger than 4,631, making it the most appropriate choice.
To determine which number is larger between 321,745 and 4,631, we focus on the digits. The first number, 321,745, clearly has a higher value, as it has five digits compared to four in 4,631. Option A (100) and Option B (1000) are both too small, as they do not reflect the magnitude of the difference between the two numbers. Option D (100,000) is also incorrect, as it exceeds the value of 321,745. Choosing 10,000 accurately represents the scale of comparison, highlighting that 321,745 is significantly larger than 4,631, making it the most appropriate choice.
Which student wrote the estimate closest to 1,592 + 8?
- A. Isabella
- B. Jayden
- C. Michael
- D. Sarah
Correct Answer & Rationale
Correct Answer: A
Isabella's estimate of 1,592 + 8 is 1,600, which is closest to the actual sum. This estimation rounds 1,592 to 1,590 and adds 10 for simplicity, yielding 1,600. Jayden likely underestimated or rounded incorrectly, resulting in a less accurate estimate. Michael may have rounded too far or added an incorrect value, leading to a larger discrepancy. Sarah's estimate might not have accounted properly for the addition, causing it to stray further from the actual result. Thus, Isabella’s approach demonstrates the most accurate estimation strategy.
Isabella's estimate of 1,592 + 8 is 1,600, which is closest to the actual sum. This estimation rounds 1,592 to 1,590 and adds 10 for simplicity, yielding 1,600. Jayden likely underestimated or rounded incorrectly, resulting in a less accurate estimate. Michael may have rounded too far or added an incorrect value, leading to a larger discrepancy. Sarah's estimate might not have accounted properly for the addition, causing it to stray further from the actual result. Thus, Isabella’s approach demonstrates the most accurate estimation strategy.
(2x+3y-7)-(2x-3y-8)?
- A. 1
- B. -15
- C. 6y+1
- D. 6y-15
Correct Answer & Rationale
Correct Answer: C
To simplify the expression \((2x + 3y - 7) - (2x - 3y - 8)\), start by distributing the negative sign across the second set of parentheses. This results in \(2x + 3y - 7 - 2x + 3y + 8\). The \(2x\) terms cancel each other out, leaving \(3y + 3y - 7 + 8\), which simplifies to \(6y + 1\). Option A (1) is incorrect as it ignores the \(6y\) term. Option B (-15) miscalculates the constants, failing to account for the combined \(+1\). Option D (6y - 15) incorrectly subtracts instead of adding the constants. Thus, the simplification leads to \(6y + 1\), confirming option C.
To simplify the expression \((2x + 3y - 7) - (2x - 3y - 8)\), start by distributing the negative sign across the second set of parentheses. This results in \(2x + 3y - 7 - 2x + 3y + 8\). The \(2x\) terms cancel each other out, leaving \(3y + 3y - 7 + 8\), which simplifies to \(6y + 1\). Option A (1) is incorrect as it ignores the \(6y\) term. Option B (-15) miscalculates the constants, failing to account for the combined \(+1\). Option D (6y - 15) incorrectly subtracts instead of adding the constants. Thus, the simplification leads to \(6y + 1\), confirming option C.
Joe’s age 4 more than 3x Amy’s. Equation?
- A. A=J/3+4
- B. A=3J+4
- C. J=3A+4
- D. J=3(A+4)
Correct Answer & Rationale
Correct Answer: C
To find the equation representing Joe's age in relation to Amy's, we start with the statement: Joe's age (J) is 4 more than 3 times Amy's age (A). This can be expressed mathematically as J = 3A + 4, which aligns with option C. Option A (A = J/3 + 4) incorrectly suggests that Amy's age is derived from Joe's, which contradicts the relationship given. Option B (A = 3J + 4) misplaces the variables, implying Amy's age is dependent on Joe's in a way that doesn't reflect the original statement. Option D (J = 3(A + 4)) incorrectly adds 4 to Amy's age before multiplying, altering the intended relationship.
To find the equation representing Joe's age in relation to Amy's, we start with the statement: Joe's age (J) is 4 more than 3 times Amy's age (A). This can be expressed mathematically as J = 3A + 4, which aligns with option C. Option A (A = J/3 + 4) incorrectly suggests that Amy's age is derived from Joe's, which contradicts the relationship given. Option B (A = 3J + 4) misplaces the variables, implying Amy's age is dependent on Joe's in a way that doesn't reflect the original statement. Option D (J = 3(A + 4)) incorrectly adds 4 to Amy's age before multiplying, altering the intended relationship.