Let f(x) = 3x². What is f(-2x)?
- A. -36x²
- B. -12x²
- C. -6x²
- D. 12x²
- E. 36x²
Correct Answer & Rationale
Correct Answer: D
To find f(-2x), substitute -2x into the function f(x) = 3x². This gives us f(-2x) = 3(-2x)². Calculating (-2x)² results in 4x², so we have f(-2x) = 3 * 4x² = 12x². Option A (-36x²) is incorrect because it misapplies the square and the coefficient. Option B (-12x²) incorrectly uses a negative sign and fails to account for the square of -2x. Option C (-6x²) mistakenly reduces the coefficient and sign. Option E (36x²) omits the multiplication by 3, leading to an incorrect coefficient. Thus, 12x² is the only valid outcome.
To find f(-2x), substitute -2x into the function f(x) = 3x². This gives us f(-2x) = 3(-2x)². Calculating (-2x)² results in 4x², so we have f(-2x) = 3 * 4x² = 12x². Option A (-36x²) is incorrect because it misapplies the square and the coefficient. Option B (-12x²) incorrectly uses a negative sign and fails to account for the square of -2x. Option C (-6x²) mistakenly reduces the coefficient and sign. Option E (36x²) omits the multiplication by 3, leading to an incorrect coefficient. Thus, 12x² is the only valid outcome.
Other Related Questions
Mallory loaded 200 digital pictures into a digital picture frame. 78 are pictures of family members, 26 are pictures of pets, the rest are pictures of friends. The frame displays one picture every 10 seconds. Which value is closest to the probability that the next picture the frame displays will be a picture of a friend?
- A. 0.33
- B. 0.43
- C. 0.48
- D. 0.52
- E. 0.96
Correct Answer & Rationale
Correct Answer: C
To find the probability that the next picture displayed is of a friend, first calculate the total number of friend pictures. There are 200 total pictures, with 78 family and 26 pet pictures, leaving 200 - 78 - 26 = 96 pictures of friends. The probability is then the number of friend pictures divided by the total: 96/200 = 0.48. Option A (0.33) underestimates the proportion of friend pictures. Option B (0.43) is also lower than the calculated probability. Option D (0.52) slightly overestimates it, and option E (0.96) is far too high, misrepresenting the actual count. Thus, 0.48 accurately reflects the likelihood of displaying a friend picture next.
To find the probability that the next picture displayed is of a friend, first calculate the total number of friend pictures. There are 200 total pictures, with 78 family and 26 pet pictures, leaving 200 - 78 - 26 = 96 pictures of friends. The probability is then the number of friend pictures divided by the total: 96/200 = 0.48. Option A (0.33) underestimates the proportion of friend pictures. Option B (0.43) is also lower than the calculated probability. Option D (0.52) slightly overestimates it, and option E (0.96) is far too high, misrepresenting the actual count. Thus, 0.48 accurately reflects the likelihood of displaying a friend picture next.
A bowl contains 18 pieces of candy: 8 red, 6 orange, and 4 green. Brandon will select 1 piece of candy at random. What is the probability that Brandon will select a green piece?
- A. 2/7
- B. 2/9
- C. 2/11
- D. 1/9
- E. 1/8
Correct Answer & Rationale
Correct Answer: B
To find the probability of selecting a green piece of candy, divide the number of green candies by the total number of candies. There are 4 green candies and 18 total candies, resulting in a probability of 4/18, which simplifies to 2/9. Option A (2/7) incorrectly assumes a different total or count of green candies. Option C (2/11) suggests an inaccurate total of candies or green pieces. Option D (1/9) miscalculates the ratio of green candies to the total. Option E (1/8) also misrepresents the count of green candies. Only B accurately reflects the correct ratio.
To find the probability of selecting a green piece of candy, divide the number of green candies by the total number of candies. There are 4 green candies and 18 total candies, resulting in a probability of 4/18, which simplifies to 2/9. Option A (2/7) incorrectly assumes a different total or count of green candies. Option C (2/11) suggests an inaccurate total of candies or green pieces. Option D (1/9) miscalculates the ratio of green candies to the total. Option E (1/8) also misrepresents the count of green candies. Only B accurately reflects the correct ratio.
Jasmine’s pace for a 3-mile race is 1 minute per mile faster than her pace for a 13-mile race. She ran the 3-mile race in 21 minutes. How many minutes will it take her to run the 13-mile race?
- A. 34
- B. 78
- C. 92
- D. 101
- E. 104
Correct Answer & Rationale
Correct Answer: E
Jasmine completed the 3-mile race in 21 minutes, which gives her a pace of 7 minutes per mile (21 minutes ÷ 3 miles). Since her pace for the 13-mile race is 1 minute slower, her pace for that race is 8 minutes per mile. To find the time for the 13-mile race, multiply her 13-mile pace by the distance: 8 minutes/mile × 13 miles = 104 minutes. Options A (34), B (78), C (92), and D (101) all reflect incorrect calculations or misunderstandings of her pacing difference and distance, leading to values that do not align with the established pace of 8 minutes per mile.
Jasmine completed the 3-mile race in 21 minutes, which gives her a pace of 7 minutes per mile (21 minutes ÷ 3 miles). Since her pace for the 13-mile race is 1 minute slower, her pace for that race is 8 minutes per mile. To find the time for the 13-mile race, multiply her 13-mile pace by the distance: 8 minutes/mile × 13 miles = 104 minutes. Options A (34), B (78), C (92), and D (101) all reflect incorrect calculations or misunderstandings of her pacing difference and distance, leading to values that do not align with the established pace of 8 minutes per mile.
Which of the following expressions is equivalent to: 1200 × (5 × 10â·)?
- A. 12×10¹â°
- B. 6.0×10¹â°
- C. 6.0×10¹¹
- D. 7.2×10¹³
- E. 9.4×10¹â´
Correct Answer & Rationale
Correct Answer: B
To find an equivalent expression for \( 1200 \times (5 \times 10^n) \), we first simplify \( 1200 \) as \( 1.2 \times 10^3 \). Thus, the expression becomes \( 1.2 \times 10^3 \times 5 \times 10^n = 6.0 \times 10^{3+n} \). Option A incorrectly simplifies the coefficient and exponent. Option C miscalculates the exponent, not aligning with the original multiplication. Option D has an incorrect coefficient and exponent combination. Option E also miscalculates the coefficient and exponent. Therefore, only option B accurately reflects the simplified expression.
To find an equivalent expression for \( 1200 \times (5 \times 10^n) \), we first simplify \( 1200 \) as \( 1.2 \times 10^3 \). Thus, the expression becomes \( 1.2 \times 10^3 \times 5 \times 10^n = 6.0 \times 10^{3+n} \). Option A incorrectly simplifies the coefficient and exponent. Option C miscalculates the exponent, not aligning with the original multiplication. Option D has an incorrect coefficient and exponent combination. Option E also miscalculates the coefficient and exponent. Therefore, only option B accurately reflects the simplified expression.