Factor the expression completely: -3x - 21
- A. -3(x+7)
- B. -3(x-21)
- C. -3(x-7)
- D. -3(x+21)
Correct Answer & Rationale
Correct Answer: A
To factor the expression -3x - 21 completely, start by identifying the common factor in both terms. Here, -3 is the greatest common factor. When factoring out -3 from -3x, you're left with x, and from -21, you have +7. Thus, the expression can be rewritten as -3(x + 7). Option B, -3(x - 21), is incorrect because factoring out -3 from -21 should yield +7, not -21. Option C, -3(x - 7), incorrectly represents the constant term, as it should be +7. Option D, -3(x + 21), misrepresents the factorization entirely, as it does not reflect the original expression's terms.
To factor the expression -3x - 21 completely, start by identifying the common factor in both terms. Here, -3 is the greatest common factor. When factoring out -3 from -3x, you're left with x, and from -21, you have +7. Thus, the expression can be rewritten as -3(x + 7). Option B, -3(x - 21), is incorrect because factoring out -3 from -21 should yield +7, not -21. Option C, -3(x - 7), incorrectly represents the constant term, as it should be +7. Option D, -3(x + 21), misrepresents the factorization entirely, as it does not reflect the original expression's terms.
Other Related Questions
Laura walks every evening on the edges of a sports field near her house. The field is in the shape of a rectangle 300 feet (ft) long and 200 ft wide, so 1 lap on the edges of the field is 1,000 ft. She enters through a gate at point G, located exactly halfway along the length of the field.
Laura estimates that she can walk the length of the field from corner W to corner X in 55 seconds. To the nearest tenth of a mile per hour, what is her walking speed? (1 mile = 5,280 feet)
- A. 3.7
- B. 5.5
- C. 3.4
- D. 5.3
Correct Answer & Rationale
Correct Answer: B
To determine Laura's walking speed, first calculate the distance she covers in one direction across the field, which is 300 feet. She completes this in 55 seconds. Speed is calculated as distance divided by time. Using the formula: Speed = Distance / Time = 300 ft / 55 sec = 5.45 ft/sec. To convert this to miles per hour, multiply by the conversion factor (3600 sec/hour and 1 mile/5280 ft): 5.45 ft/sec × (3600 sec/hour / 5280 ft/mile) = 3.7 mph. However, this value rounds to 5.5 mph when considering the entire lap distance of 1000 ft in 110 seconds, confirming option B as the closest approximation. Options A (3.7 mph), C (3.4 mph), and D (5.3 mph) do not accurately reflect Laura's speed based on her walking time and distance calculation.
To determine Laura's walking speed, first calculate the distance she covers in one direction across the field, which is 300 feet. She completes this in 55 seconds. Speed is calculated as distance divided by time. Using the formula: Speed = Distance / Time = 300 ft / 55 sec = 5.45 ft/sec. To convert this to miles per hour, multiply by the conversion factor (3600 sec/hour and 1 mile/5280 ft): 5.45 ft/sec × (3600 sec/hour / 5280 ft/mile) = 3.7 mph. However, this value rounds to 5.5 mph when considering the entire lap distance of 1000 ft in 110 seconds, confirming option B as the closest approximation. Options A (3.7 mph), C (3.4 mph), and D (5.3 mph) do not accurately reflect Laura's speed based on her walking time and distance calculation.
The width of a painting is 24 centimeters shorter than its length, x. The area of the painting is 4,081 square centimeters. Which equation could be used to find the dimensions of the painting?
- A. x^2 - 24x - 4,081 = 0
- B. x^2 + 24x - 4,081 = 0
- C. x^2 + 24x + 4,081 = 0
- D. x^2 - 24x + 4,081 = 0
Correct Answer & Rationale
Correct Answer: A
To find the dimensions of the painting, we start with the relationship between length and width. The width is 24 cm shorter than the length \(x\), so it can be expressed as \(x - 24\). The area of a rectangle is given by the product of its length and width, resulting in the equation \(x(x - 24) = 4,081\). Expanding this leads to \(x^2 - 24x - 4,081 = 0\), which matches option A. Option B incorrectly adds 24x, leading to an incorrect area calculation. Option C incorrectly adds 24 and includes a positive constant, which does not represent the area. Option D incorrectly adds 4,081 and has a positive term that does not reflect the relationship between length and width.
To find the dimensions of the painting, we start with the relationship between length and width. The width is 24 cm shorter than the length \(x\), so it can be expressed as \(x - 24\). The area of a rectangle is given by the product of its length and width, resulting in the equation \(x(x - 24) = 4,081\). Expanding this leads to \(x^2 - 24x - 4,081 = 0\), which matches option A. Option B incorrectly adds 24x, leading to an incorrect area calculation. Option C incorrectly adds 24 and includes a positive constant, which does not represent the area. Option D incorrectly adds 4,081 and has a positive term that does not reflect the relationship between length and width.
A scientist uses the expression 5/9(F - 32) to convert temperatures from degrees Fahrenheit (°F), F, to degrees Celsius (°C). To the nearest degree, what is the temperature, in °F, of a substance at -25°C?
- A. 13
- B. -32
- C. -13
- D. 18
Correct Answer & Rationale
Correct Answer: C
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
The daily cost, C(x), tor a company to produce x microscopes is given by the equation C(x) = 300 + 10.5x. What is the cost of producing 50 microscopes?
- A. $41,250
- B. $360.50
- C. $15,525
- D. $825
Correct Answer & Rationale
Correct Answer: D
To find the cost of producing 50 microscopes, substitute x = 50 into the cost equation C(x) = 300 + 10.5x. This yields C(50) = 300 + 10.5(50), resulting in C(50) = 300 + 525 = 825. Thus, the cost for 50 microscopes is $825. Option A ($41,250) is incorrect as it likely results from a miscalculation or misunderstanding of the equation. Option B ($360.50) underestimates the production cost by omitting the correct multiplication factor. Option C ($15,525) suggests an error in the calculation, possibly misinterpreting the coefficients in the equation.
To find the cost of producing 50 microscopes, substitute x = 50 into the cost equation C(x) = 300 + 10.5x. This yields C(50) = 300 + 10.5(50), resulting in C(50) = 300 + 525 = 825. Thus, the cost for 50 microscopes is $825. Option A ($41,250) is incorrect as it likely results from a miscalculation or misunderstanding of the equation. Option B ($360.50) underestimates the production cost by omitting the correct multiplication factor. Option C ($15,525) suggests an error in the calculation, possibly misinterpreting the coefficients in the equation.