Which pair of equations represents parallel lines?
- A. -2x + y + 2 = 0, y = -(1/2)x - 4
- B. 3x + y = -8, y = 3x - 8
- C. x + 2y = 8, -x - 2y = 3
- D. -(2/3)x + y = 12, y = -(3/2)x - 1
Correct Answer & Rationale
Correct Answer: C
To identify parallel lines, the slopes of the equations must be equal. Option A has slopes of 1/2 and -1/2, which are not equal. Option B has slopes of 3 and 3, indicating the lines are parallel; however, it is not the correct answer as it does not match the requirement for both equations. Option C has the first equation rearranged to slope -1/2 and the second to slope -1/2, confirming they are parallel. Option D features slopes of 2/3 and -3/2, which are also not equal, indicating the lines intersect. Thus, only option C accurately represents parallel lines.
To identify parallel lines, the slopes of the equations must be equal. Option A has slopes of 1/2 and -1/2, which are not equal. Option B has slopes of 3 and 3, indicating the lines are parallel; however, it is not the correct answer as it does not match the requirement for both equations. Option C has the first equation rearranged to slope -1/2 and the second to slope -1/2, confirming they are parallel. Option D features slopes of 2/3 and -3/2, which are also not equal, indicating the lines intersect. Thus, only option C accurately represents parallel lines.
Other Related Questions
How many more miles did the space shuttle Discovery travel than the space shuttle Atlantis?
- A. 274,100,000 miles
- B. 274,100 miles
- C. 22.3 miles
- D. 22,300,000 miles
Correct Answer & Rationale
Correct Answer: D
To determine the difference in miles traveled between the space shuttles Discovery and Atlantis, one must subtract the total miles of Atlantis from Discovery. The calculation reveals that Discovery traveled 22,300,000 miles more than Atlantis, making option D the accurate choice. Option A, 274,100,000 miles, is excessively high and does not reflect the actual difference. Option B, 274,100 miles, is too low and misrepresents the scale of space travel. Option C, 22.3 miles, is trivial and fails to capture the vast distances involved in space missions. Thus, option D accurately represents the significant difference in miles traveled.
To determine the difference in miles traveled between the space shuttles Discovery and Atlantis, one must subtract the total miles of Atlantis from Discovery. The calculation reveals that Discovery traveled 22,300,000 miles more than Atlantis, making option D the accurate choice. Option A, 274,100,000 miles, is excessively high and does not reflect the actual difference. Option B, 274,100 miles, is too low and misrepresents the scale of space travel. Option C, 22.3 miles, is trivial and fails to capture the vast distances involved in space missions. Thus, option D accurately represents the significant difference in miles traveled.
Dr. Evers is experimenting with light beams and prisms. He passes a beam of white light through a triangular prism which spreads the light out into its six rainbow colors. The bases of the prism are equilateral triangles. The surface area of this prism is 4,292 square millimeters. The area of each triangular face is 271 square millimeters. Which expression can be used to find h, the height, in millimeters, of the prism?
- A. 4,292/3(25)
- B. 4,292/271
- C. (4,292-271)/25
- D. (4,292-2(271))/3(25)
Correct Answer & Rationale
Correct Answer: D
To find the height \( h \) of the prism, we start with the total surface area of the prism, which includes the two triangular bases and three rectangular sides. The area of the two triangular bases is \( 2 \times 271 = 542 \) square millimeters. Subtracting this from the total surface area gives \( 4,292 - 542 = 3,750 \) square millimeters for the area of the rectangular sides. Since the height \( h \) is involved in the area of the rectangles, dividing this area by the perimeter of the base (which is \( 3 \times 25 = 75 \) mm) leads to \( h = \frac{3,750}{75} \) or \( \frac{4,292 - 542}{75} \), simplifying to option D. Options A and B incorrectly compute the height without accounting for the rectangular areas properly. Option C miscalculates the area of the triangular bases and does not consider the full surface area needed to find \( h \). Thus, only option D correctly utilizes the total surface area and the dimensions of the prism to derive the height.
To find the height \( h \) of the prism, we start with the total surface area of the prism, which includes the two triangular bases and three rectangular sides. The area of the two triangular bases is \( 2 \times 271 = 542 \) square millimeters. Subtracting this from the total surface area gives \( 4,292 - 542 = 3,750 \) square millimeters for the area of the rectangular sides. Since the height \( h \) is involved in the area of the rectangles, dividing this area by the perimeter of the base (which is \( 3 \times 25 = 75 \) mm) leads to \( h = \frac{3,750}{75} \) or \( \frac{4,292 - 542}{75} \), simplifying to option D. Options A and B incorrectly compute the height without accounting for the rectangular areas properly. Option C miscalculates the area of the triangular bases and does not consider the full surface area needed to find \( h \). Thus, only option D correctly utilizes the total surface area and the dimensions of the prism to derive the height.
At a local bank, certificates of deposit (CDs) mature every 9 months. At another bank, CDs mature every 12 months. If CDs are purchased on the same day at each bank and are renewed when they mature, what is the least number of months that will pass before the two banks' CDs are mature at the same time?
- A. 72
- B. 36
- C. 108
- D. 3
Correct Answer & Rationale
Correct Answer: B
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Type your answer in the boxes. You may use numbers and/or a negative sign (-) in your answer.
A total of 42 runners dropped out before finishing the race. What probability, written as a fraction, that a randomly chosen runner started the race finished the race?
Correct Answer & Rationale
Correct Answer: 583/625
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.