Which of the following represents the cost, in dollars, of renting a car for d days and driving m miles?
- A. 45+.25+ d+m
- B. 45.25+ dm
- C. 45d +.25m
- D. 45/d +25/m
Correct Answer & Rationale
Correct Answer: C
Option C accurately represents the cost of renting a car, where $45 is a fixed daily rental fee multiplied by the number of days (d) and $0.25 is the cost per mile multiplied by the number of miles driven (m). Option A incorrectly adds the fixed cost and variable costs without proper multiplication, leading to an illogical expression. Option B misrepresents the relationship by multiplying the daily rate by the miles driven, which does not reflect the cost structure. Option D divides the fixed cost by days and the cost per mile by miles, which does not align with standard cost calculations for renting a car.
Option C accurately represents the cost of renting a car, where $45 is a fixed daily rental fee multiplied by the number of days (d) and $0.25 is the cost per mile multiplied by the number of miles driven (m). Option A incorrectly adds the fixed cost and variable costs without proper multiplication, leading to an illogical expression. Option B misrepresents the relationship by multiplying the daily rate by the miles driven, which does not reflect the cost structure. Option D divides the fixed cost by days and the cost per mile by miles, which does not align with standard cost calculations for renting a car.
Other Related Questions
A bowl contains 6 green grapes, 10 red grapes, and 8 black grapes.Which of the following is the correct calculation for the probability of choosing a red grape and then without putting the red grape back into the bowl, choosing a green grape?
- A. 10/24+6/24
- B. 10/24+6/23
- C. 10/24*6/24
- D. 10/24*6/23
Correct Answer & Rationale
Correct Answer: D
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
The sum of n and the product 3 times n is 12. What is the value of n?
- A. 2
- B. 3
- C. 4
- D. 4 ½
Correct Answer & Rationale
Correct Answer: B
To solve the equation formed by the problem statement, we express it as \( n + 3n = 12 \), which simplifies to \( 4n = 12 \). Dividing both sides by 4 gives \( n = 3 \). Option A (2) does not satisfy the equation, as substituting it results in \( 2 + 6 = 8 \), which is incorrect. Option C (4) leads to \( 4 + 12 = 16 \), also incorrect. Option D (4 ½) results in \( 4.5 + 13.5 = 18 \), which is too high. Thus, only \( n = 3 \) fulfills the original equation, confirming its validity.
To solve the equation formed by the problem statement, we express it as \( n + 3n = 12 \), which simplifies to \( 4n = 12 \). Dividing both sides by 4 gives \( n = 3 \). Option A (2) does not satisfy the equation, as substituting it results in \( 2 + 6 = 8 \), which is incorrect. Option C (4) leads to \( 4 + 12 = 16 \), also incorrect. Option D (4 ½) results in \( 4.5 + 13.5 = 18 \), which is too high. Thus, only \( n = 3 \) fulfills the original equation, confirming its validity.
Doreen bought a dress priced at $89 and a skirt priced at $36. She paid a total of $135 for the dress and the skirt, including sales tax. What was the sales tax rate?
- A. 6%
- B. 7%
- C. 8%
- D. 9%
Correct Answer & Rationale
Correct Answer: C
To determine the sales tax rate, first calculate the total cost of the dress and skirt without tax: $89 + $36 = $125. Doreen paid $135, which means the sales tax was $135 - $125 = $10. To find the sales tax rate, divide the tax amount by the pre-tax total: $10 / $125 = 0.08, or 8%. Option A (6%) is incorrect as it would result in a lower tax amount. Option B (7%) also yields a tax amount that is too low. Option D (9%) would produce a tax amount exceeding $10, making it incorrect. Thus, the only option that accurately reflects the calculated sales tax rate is 8%.
To determine the sales tax rate, first calculate the total cost of the dress and skirt without tax: $89 + $36 = $125. Doreen paid $135, which means the sales tax was $135 - $125 = $10. To find the sales tax rate, divide the tax amount by the pre-tax total: $10 / $125 = 0.08, or 8%. Option A (6%) is incorrect as it would result in a lower tax amount. Option B (7%) also yields a tax amount that is too low. Option D (9%) would produce a tax amount exceeding $10, making it incorrect. Thus, the only option that accurately reflects the calculated sales tax rate is 8%.
(a ^ 9 * b ^ 12)/(a ^ 3 * b) =
- A. a ^ 3 * b ^ 11
- B. a ^ 6 * b ^ 12
- C. a ^ 3 * b ^ 12
- D. a ^ 6 * b ^ 11
Correct Answer & Rationale
Correct Answer: D
To simplify the expression \((a^9 * b^{12})/(a^3 * b)\), apply the laws of exponents. For the \(a\) terms, subtract the exponents: \(9 - 3 = 6\), giving \(a^6\). For the \(b\) terms, also subtract the exponents: \(12 - 1 = 11\), resulting in \(b^{11}\). Thus, the simplified expression is \(a^6 * b^{11}\). Option A is incorrect because it miscalculates the exponent of \(b\). Option B incorrectly maintains the exponent of \(b\) at 12. Option C fails to adjust the exponent of \(a\) correctly. Only option D accurately reflects the simplification.
To simplify the expression \((a^9 * b^{12})/(a^3 * b)\), apply the laws of exponents. For the \(a\) terms, subtract the exponents: \(9 - 3 = 6\), giving \(a^6\). For the \(b\) terms, also subtract the exponents: \(12 - 1 = 11\), resulting in \(b^{11}\). Thus, the simplified expression is \(a^6 * b^{11}\). Option A is incorrect because it miscalculates the exponent of \(b\). Option B incorrectly maintains the exponent of \(b\) at 12. Option C fails to adjust the exponent of \(a\) correctly. Only option D accurately reflects the simplification.