While exploring the Moon during the Apollo 15 mission, astronaut David Scott held a 1.32-kg geological hammer in one hand and a 0.03-kg falcon feather in the other, releasing them from the same height. The Moon has no air resistance and the acceleration due to gravity is only 1.6 m/s'. The two objects landed on the surface of the Moon at the same time.
What is the relationship between the kinetic energy of the feather and of the hammer just before they hit the surface of the Moon?
- A. The hammer has more kinetic energy than the feather because it has a greater mass.
- B. Both objects have the same kinetic energy because they fell with the same velocity.
- C. The hammer has more kinetic energy than the feather because it will accelerate faster than the feather.
- D. Both objects have the same kinetic energy because gravity pulls on both objects equally.
Correct Answer & Rationale
Correct Answer: A
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
Other Related Questions
Placing solid ammonium nitrate, NH4NO3, in a container of water causes an endothermic reaction. The result is ammonium hydroxide, NH4OH, and nitric acid, HNO3. Which diagram shows the correct equation for the reaction?
- A. NH4OH + HNO3 → NH4NO3 + H2O + energy
- B. NH4NO3 + H2O + energy → NH4OH + HNO3
- C. NH4NO3 + H2O → NH4OH + HNO3 + energy
- D. NH4OH + HNO3 + energy → NH4NO3 + H2O
Correct Answer & Rationale
Correct Answer: B
The reaction between solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Thus, the equation must reflect the consumption of energy during the process. Option B correctly shows that ammonium nitrate (NH4NO3) and water react to form ammonium hydroxide (NH4OH) and nitric acid (HNO3), while requiring energy input. Option A incorrectly suggests energy is released, which contradicts the endothermic nature of the reaction. Option C implies that energy is produced, which is also incorrect. Option D similarly misrepresents the reaction by suggesting energy is released, aligning with an exothermic process rather than the observed endothermic reaction.
The reaction between solid ammonium nitrate and water is endothermic, meaning it absorbs energy. Thus, the equation must reflect the consumption of energy during the process. Option B correctly shows that ammonium nitrate (NH4NO3) and water react to form ammonium hydroxide (NH4OH) and nitric acid (HNO3), while requiring energy input. Option A incorrectly suggests energy is released, which contradicts the endothermic nature of the reaction. Option C implies that energy is produced, which is also incorrect. Option D similarly misrepresents the reaction by suggesting energy is released, aligning with an exothermic process rather than the observed endothermic reaction.
The roller coaster diagram shows a set of cars moving downward from position 1 to position 2. As the cars travel from position 1 toward position 2, their...
- A. gravitational potential energy; total energy
- B. kinetic energy; gravitational potential energy
- C. total energy; kinetic energy
- D. gravitational potential energy; kinetic energy
Correct Answer & Rationale
Correct Answer: A
As the roller coaster cars move from position 1 to position 2, they descend, resulting in a decrease in gravitational potential energy due to their lower height. However, their total energy—comprising both kinetic and potential energy—remains constant, assuming negligible friction. Option B incorrectly suggests that kinetic energy increases while gravitational potential energy decreases, but it does not address total energy. Option C misrepresents the relationship by stating total energy changes, which it does not. Option D also fails, as it inaccurately implies that gravitational potential energy is the only energy type being discussed.
As the roller coaster cars move from position 1 to position 2, they descend, resulting in a decrease in gravitational potential energy due to their lower height. However, their total energy—comprising both kinetic and potential energy—remains constant, assuming negligible friction. Option B incorrectly suggests that kinetic energy increases while gravitational potential energy decreases, but it does not address total energy. Option C misrepresents the relationship by stating total energy changes, which it does not. Option D also fails, as it inaccurately implies that gravitational potential energy is the only energy type being discussed.
Which statement from the passage refutes Lavoisier's idea that heat is a fluid that leaves a hot substance and travels to a colder substance?
- A. He also found the brass filings produced from the drilling process contained enough heat to boil water while retaining their weight.
- B. James Joule discovered that heat could be produced by moving a wire through a magnetic field.
- C. Lavoisier demonstrated that oxygen was required for combustion.
- D. Count Rumford observed that the process of boring out cannons from brass cylinders continuously produced heat.
Correct Answer & Rationale
Correct Answer: A
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.
What statement describes one or more needed changes to this experiment that would allow the experimenter to draw a valid conclusion?
- A. Salt water should have been used to make the ice cubes for the cup of salt water.
- B. The time for ice cubes to melt should have been measured in minutes.
- C. At the beginning, both cups should have contained the same mass of water at the same temperature.
- D. The energy released should have been measured, not calculated.
Correct Answer & Rationale
Correct Answer: C
Option C highlights the necessity for both cups to start with the same mass of water at the same temperature to ensure a fair comparison. This control eliminates variables that could skew results, allowing for a valid conclusion about the melting rates of ice cubes in different solutions. Option A is incorrect because using salt water to make ice cubes would not provide relevant data on how the ice behaves in fresh versus salt water. Option B is not a change that affects the experimental validity; measuring time in minutes is appropriate, but the key is ensuring conditions are equal. Option D suggests a measurement method change, but calculating energy based on temperature changes is acceptable in this context.
Option C highlights the necessity for both cups to start with the same mass of water at the same temperature to ensure a fair comparison. This control eliminates variables that could skew results, allowing for a valid conclusion about the melting rates of ice cubes in different solutions. Option A is incorrect because using salt water to make ice cubes would not provide relevant data on how the ice behaves in fresh versus salt water. Option B is not a change that affects the experimental validity; measuring time in minutes is appropriate, but the key is ensuring conditions are equal. Option D suggests a measurement method change, but calculating energy based on temperature changes is acceptable in this context.