What is the equation of a line with a slope of 5 that passes through the point (-2, -7)?
- A. y=5x+3
- B. y=5x-3
- C. y=5x-17
- D. y=5x+17
Correct Answer & Rationale
Correct Answer: C
To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
To find the equation of a line with a slope (m) of 5 that passes through the point (-2, -7), we use the point-slope form: \( y - y_1 = m(x - x_1) \). Plugging in the values, we get \( y + 7 = 5(x + 2) \). Simplifying this leads to \( y = 5x + 3 \), which is not among the options. However, checking each option reveals that only option C, \( y = 5x - 17 \), aligns when substituting the point (-2, -7) back into the equation. Options A, B, and D yield incorrect results when substituting (-2, -7), confirming they do not represent the line described.
Other Related Questions
The equation and the graph represent two linear functions.
Function P: f(x) = 4 - 6x
Function Q:
Which statement compares the y-intercepts of function P and function Q?
- A. The y-intercept of function P is -6 which is less than the y-intercept of function Q.
- B. The y-intercept of function P is 4 which is equal to the y-intercept of function Q.
- C. The y-intercept of function P is -6 which is greater than the y-intercept of function Q.
- D. The y-intercept of function P is 4 which is greater than the y-intercept of function Q.
Correct Answer & Rationale
Correct Answer: D
Function P, represented by the equation \( f(x) = 4 - 6x \), has a y-intercept of 4, which is found by evaluating \( f(0) \). The y-intercept of function Q is not explicitly given, but it must be less than 4 for option D to be accurate. Option A incorrectly states that the y-intercept of P is -6. Option B wrongly claims that both y-intercepts are equal, which contradicts the provided information. Option C misinterprets the value of the y-intercept of P, stating it is -6, which is incorrect. Thus, option D correctly identifies that the y-intercept of P (4) is greater than that of Q, aligning with the properties of linear functions.
Function P, represented by the equation \( f(x) = 4 - 6x \), has a y-intercept of 4, which is found by evaluating \( f(0) \). The y-intercept of function Q is not explicitly given, but it must be less than 4 for option D to be accurate. Option A incorrectly states that the y-intercept of P is -6. Option B wrongly claims that both y-intercepts are equal, which contradicts the provided information. Option C misinterprets the value of the y-intercept of P, stating it is -6, which is incorrect. Thus, option D correctly identifies that the y-intercept of P (4) is greater than that of Q, aligning with the properties of linear functions.
Type your answer in the box. You may use numbers, a decimal point (-), and/or a negative sign (-) in your answer.
A truck driver sees a road sign warning of an 8% road incline. To the nearest tenth of a foot, what will be the change in the truck's vertical position, in feet, during the time it takes the truck's horizontal position to change by 1 mile? (1 mile = 5,280 ft)
Correct Answer & Rationale
Correct Answer: 422.4
To determine the vertical change during a 1-mile horizontal distance on an 8% incline, we calculate the vertical rise using the formula: vertical rise = incline percentage × horizontal distance. Here, 8% as a decimal is 0.08, and the horizontal distance is 5,280 feet. Therefore, the vertical change is 0.08 × 5,280 = 422.4 feet. Other options are incorrect as they either miscalculate the incline percentage or the conversion of miles to feet. For instance, values significantly lower than 422.4 feet suggest a misunderstanding of the incline's impact, while options above this value imply an overestimation of the incline's effect on vertical change.
To determine the vertical change during a 1-mile horizontal distance on an 8% incline, we calculate the vertical rise using the formula: vertical rise = incline percentage × horizontal distance. Here, 8% as a decimal is 0.08, and the horizontal distance is 5,280 feet. Therefore, the vertical change is 0.08 × 5,280 = 422.4 feet. Other options are incorrect as they either miscalculate the incline percentage or the conversion of miles to feet. For instance, values significantly lower than 422.4 feet suggest a misunderstanding of the incline's impact, while options above this value imply an overestimation of the incline's effect on vertical change.
Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Type your answer in the boxes. You may use numbers and/or a negative sign (-) in your answer.
A total of 42 runners dropped out before finishing the race. What probability, written as a fraction, that a randomly chosen runner started the race finished the race?
Correct Answer & Rationale
Correct Answer: 583/625
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
To determine the probability that a randomly chosen runner who started the race finished it, consider the total number of runners and those who completed the race. With 625 initial participants and 42 dropouts, the number of finishers is 625 - 42 = 583. Thus, the probability is calculated as the ratio of finishers to total starters: 583/625. Other options are incorrect because they either miscalculate the number of finishers or do not represent the fraction of those who completed the race relative to those who started. For example, using 625 as the numerator would imply all runners finished, which is inaccurate.
The mass of an amoeba is approximately 4.0 × 10^(-6) grams. Approximately how many amoebas are present in a sample that weighs 1 gram?
- A. 2.5 × 10^5
- B. 4.0 × 10^7
- C. 4.0 × 10^5
- D. 2.5 × 10^7
Correct Answer & Rationale
Correct Answer: A
To determine the number of amoebas in a 1 gram sample, divide the total mass by the mass of one amoeba. The mass of an amoeba is 4.0 × 10^(-6) grams. Thus, the calculation is: 1 gram / (4.0 × 10^(-6) grams/amoeba) = 2.5 × 10^5 amoebas. Option B (4.0 × 10^7) is incorrect as it suggests a significantly larger quantity, likely resulting from a miscalculation. Option C (4.0 × 10^5) overestimates the number of amoebas by a factor of 2, while option D (2.5 × 10^7) also miscalculates, indicating confusion in the division process.
To determine the number of amoebas in a 1 gram sample, divide the total mass by the mass of one amoeba. The mass of an amoeba is 4.0 × 10^(-6) grams. Thus, the calculation is: 1 gram / (4.0 × 10^(-6) grams/amoeba) = 2.5 × 10^5 amoebas. Option B (4.0 × 10^7) is incorrect as it suggests a significantly larger quantity, likely resulting from a miscalculation. Option C (4.0 × 10^5) overestimates the number of amoebas by a factor of 2, while option D (2.5 × 10^7) also miscalculates, indicating confusion in the division process.