The owner of a small cookie shop is examining the shop's revenue and costs to see how she can increase profits. Currently, the shop has expenses of $41.26 and $0.19 per cookie.
The shop's revenue and profit depend on the sales price of the cookies. The daily revenue is given in the graph below, where x is the sales price of the cookies and y is the expected revenue at that price.
The shop owner needs to determine the total daily cost of making x cookies. Which of the following linear equations represents the cost, C, in dollars?
- A. C=4.6x+995
- B. C=0.046x+2
- C. C=0.19x+41.26
- D. C=1.2x+212.26
Correct Answer & Rationale
Correct Answer: C
The equation representing total daily cost must account for both fixed and variable costs. The fixed cost of $41.26 reflects the shop's expenses, while the variable cost is $0.19 per cookie, leading to the term 0.19x for x cookies. Therefore, C = 0.19x + 41.26 accurately captures both components. Option A incorrectly suggests a much higher fixed cost and variable rate, implying unrealistic expenses. Option B has a fixed cost that is too low and a variable cost that is also incorrect. Option D presents exaggerated figures for both fixed and variable costs, misrepresenting the shop's actual expenses.
The equation representing total daily cost must account for both fixed and variable costs. The fixed cost of $41.26 reflects the shop's expenses, while the variable cost is $0.19 per cookie, leading to the term 0.19x for x cookies. Therefore, C = 0.19x + 41.26 accurately captures both components. Option A incorrectly suggests a much higher fixed cost and variable rate, implying unrealistic expenses. Option B has a fixed cost that is too low and a variable cost that is also incorrect. Option D presents exaggerated figures for both fixed and variable costs, misrepresenting the shop's actual expenses.
Other Related Questions
Which graph shows a line described by 4x - 3y = 12?
- A. M-97A.png
- B. M-97B.png
- C. M-97C.png
- D. M-97D.png
Correct Answer & Rationale
Correct Answer: D
To determine which graph represents the line described by the equation 4x - 3y = 12, we can rearrange it into slope-intercept form (y = mx + b). This yields y = (4/3)x - 4. The slope (m) is 4/3, indicating the line rises 4 units for every 3 units it runs to the right, and the y-intercept (b) is -4, meaning the line crosses the y-axis at (0, -4). Option D correctly displays a line with a positive slope and a y-intercept at -4. Options A, B, and C either have the wrong slope or intercept, indicating they do not accurately represent the given equation.
To determine which graph represents the line described by the equation 4x - 3y = 12, we can rearrange it into slope-intercept form (y = mx + b). This yields y = (4/3)x - 4. The slope (m) is 4/3, indicating the line rises 4 units for every 3 units it runs to the right, and the y-intercept (b) is -4, meaning the line crosses the y-axis at (0, -4). Option D correctly displays a line with a positive slope and a y-intercept at -4. Options A, B, and C either have the wrong slope or intercept, indicating they do not accurately represent the given equation.
A diver jumps from a platform. The height, h meters, the diver is above the water t seconds after jumping is represented by h = -16t^2 + 16t + 6.5. To the near hundredth of a second, how many seconds after jumping is the diver 2.5 meters above the water?
- A. 2.79
- B. 1.32
- C. 2.83
- D. 1.21
Correct Answer & Rationale
Correct Answer: D
To find when the diver is 2.5 meters above the water, substitute h = 2.5 into the equation: \[ 2.5 = -16t^2 + 16t + 6.5. \] Rearranging gives: \[ -16t^2 + 16t + 4 = 0. \] Using the quadratic formula, we solve for t, yielding two potential solutions. The option D (1.21 seconds) is valid as it falls within the realistic time frame of the jump. Options A (2.79) and C (2.83) exceed the expected time of descent, while B (1.32) does not satisfy the equation, confirming that only D accurately represents the diver's position at 2.5 meters above the water.
To find when the diver is 2.5 meters above the water, substitute h = 2.5 into the equation: \[ 2.5 = -16t^2 + 16t + 6.5. \] Rearranging gives: \[ -16t^2 + 16t + 4 = 0. \] Using the quadratic formula, we solve for t, yielding two potential solutions. The option D (1.21 seconds) is valid as it falls within the realistic time frame of the jump. Options A (2.79) and C (2.83) exceed the expected time of descent, while B (1.32) does not satisfy the equation, confirming that only D accurately represents the diver's position at 2.5 meters above the water.
A shipping box for a refrigerator is shaped like a rectangular prism. The box has a depth of 34.25 inches (in.), a height of 69.37 in., and a width of 32.62 in. To the nearest hundredth cubic inch, what is the volume of the shipping bax?
- A. 2,262.85
- B. 77,502.59
- C. 136.24
- D. 25,834.20
Correct Answer & Rationale
Correct Answer: B
To determine the volume of a rectangular prism, the formula \( V = \text{length} \times \text{width} \times \text{height} \) is applied. Given the dimensions—depth (length) of 34.25 in., width of 32.62 in., and height of 69.37 in.—the calculation yields a volume of approximately 77,502.59 cubic inches. Option A (2,262.85) is far too small, indicating a miscalculation. Option C (136.24) is implausibly low, likely resulting from using incorrect units or dimensions. Option D (25,834.20) is also incorrect, as it does not reflect the correct multiplication of the given dimensions. Thus, only option B accurately represents the calculated volume.
To determine the volume of a rectangular prism, the formula \( V = \text{length} \times \text{width} \times \text{height} \) is applied. Given the dimensions—depth (length) of 34.25 in., width of 32.62 in., and height of 69.37 in.—the calculation yields a volume of approximately 77,502.59 cubic inches. Option A (2,262.85) is far too small, indicating a miscalculation. Option C (136.24) is implausibly low, likely resulting from using incorrect units or dimensions. Option D (25,834.20) is also incorrect, as it does not reflect the correct multiplication of the given dimensions. Thus, only option B accurately represents the calculated volume.
A carpenter is installing shelves in 2 offices. Each office will have 4 shelves. The wood the carpenter wants to use comes in 6-foot-long boards. Each shelf is 2 ¼ feet long and is constructed from a single board. How many boards does the carpenter need to buy to make the shelves?
- A. 2
- B. 8
- C. 3
- D. 4
Correct Answer & Rationale
Correct Answer: D
To determine how many boards are needed, first calculate the total length of wood required for the shelves. Each office has 4 shelves, and with 2 offices, that totals 8 shelves. Each shelf is 2 ¼ feet long, which equals 2.25 feet. Therefore, the total length required is 8 shelves x 2.25 feet = 18 feet. Each board is 6 feet long. Dividing the total length (18 feet) by the length of each board (6 feet) gives 3 boards. However, since each board can only be used for one shelf, and we can't cut a board to make multiple shelves, we need to round up to the nearest whole number of boards needed, which is 4. - Option A (2 boards) is insufficient for the total length required. - Option B (8 boards) exceeds the necessary amount. - Option C (3 boards) miscalculates the total need based on the cut requirement. Thus, 4 boards are necessary to accommodate all shelves without waste.
To determine how many boards are needed, first calculate the total length of wood required for the shelves. Each office has 4 shelves, and with 2 offices, that totals 8 shelves. Each shelf is 2 ¼ feet long, which equals 2.25 feet. Therefore, the total length required is 8 shelves x 2.25 feet = 18 feet. Each board is 6 feet long. Dividing the total length (18 feet) by the length of each board (6 feet) gives 3 boards. However, since each board can only be used for one shelf, and we can't cut a board to make multiple shelves, we need to round up to the nearest whole number of boards needed, which is 4. - Option A (2 boards) is insufficient for the total length required. - Option B (8 boards) exceeds the necessary amount. - Option C (3 boards) miscalculates the total need based on the cut requirement. Thus, 4 boards are necessary to accommodate all shelves without waste.