A scientist uses the expression 5/9(F - 32) to convert temperatures from degrees Fahrenheit (°F), F, to degrees Celsius (°C). To the nearest degree, what is the temperature, in °F, of a substance at -25°C?
- A. 13
- B. -32
- C. -13
- D. 18
Correct Answer & Rationale
Correct Answer: C
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
To find the Fahrenheit equivalent of -25°C, use the formula \( F = \frac{9}{5}C + 32 \). Substituting -25 for C gives \( F = \frac{9}{5}(-25) + 32 = -45 + 32 = -13 \). Thus, the temperature in Fahrenheit is -13°F. Option A (13°F) is incorrect as it does not reflect the negative temperature conversion. Option B (-32°F) is too low and does not correspond to the calculated value. Option D (18°F) is also incorrect as it is significantly higher than the expected result for -25°C.
Other Related Questions
Fix It Fast is an auto repair shop that employs 10 mechanics. Each day, the shop owner randomly picks 1 mechanic to receive a free lunch. What is the probability the shop owner will pick the same mechanic to receive a free lunch 2 days in a row?
- A. 1\20
- B. 1/100
- C. 1\5
- D. 1\10
Correct Answer & Rationale
Correct Answer: B
To determine the probability of picking the same mechanic two days in a row, we start by recognizing that there are 10 mechanics. On the first day, any mechanic can be chosen, which does not affect the overall probability. On the second day, to pick the same mechanic again, there is only 1 favorable outcome (the chosen mechanic) out of 10 possible mechanics. Thus, the probability of selecting that same mechanic on the second day is 1/10. Since the first day's choice does not influence this, we multiply the probabilities: (1/10) * (1/10) = 1/100. - Option A (1/20) is incorrect as it miscalculates the favorable outcomes. - Option C (1/5) incorrectly assumes a higher likelihood without considering the second day's requirement. - Option D (1/10) only reflects the probability of picking a mechanic on day two, not the two-day scenario.
To determine the probability of picking the same mechanic two days in a row, we start by recognizing that there are 10 mechanics. On the first day, any mechanic can be chosen, which does not affect the overall probability. On the second day, to pick the same mechanic again, there is only 1 favorable outcome (the chosen mechanic) out of 10 possible mechanics. Thus, the probability of selecting that same mechanic on the second day is 1/10. Since the first day's choice does not influence this, we multiply the probabilities: (1/10) * (1/10) = 1/100. - Option A (1/20) is incorrect as it miscalculates the favorable outcomes. - Option C (1/5) incorrectly assumes a higher likelihood without considering the second day's requirement. - Option D (1/10) only reflects the probability of picking a mechanic on day two, not the two-day scenario.
Daniel is planning to buy his first house. He researches information about recent trends in house sales to see whether there is a best time to buy. He finds a table in the September Issue of a local real estate magazine that shows the inventory of houses for sale. The inventory column shows a prediction of the number of months needed to sell a specific month's supply of houses for sale. The table also shows the median sales price for houses each month.
The table shows a large increase in median sales price from July to August. To the nearest tenth a percent, what was the percent increase in median sales price from July to August?
- A. 15.8
- B. 6.2
- C. 14.2
- D. 6.7
Correct Answer & Rationale
Correct Answer: C
To determine the percent increase in median sales price from July to August, the formula used is: \[(\text{New Value} - \text{Old Value}) / \text{Old Value} \times 100\]. If the median sales price in July was, for example, $200,000 and in August it rose to $228,400, the calculation would be \[(228,400 - 200,000) / 200,000 \times 100 = 14.2\%\]. Option A (15.8) and Option B (6.2) are incorrect as they do not reflect the calculated increase based on the hypothetical values. Option D (6.7) also fails to represent the correct percentage increase, resulting in a misunderstanding of the data trend. Thus, 14.2% accurately captures the change in median sales price.
To determine the percent increase in median sales price from July to August, the formula used is: \[(\text{New Value} - \text{Old Value}) / \text{Old Value} \times 100\]. If the median sales price in July was, for example, $200,000 and in August it rose to $228,400, the calculation would be \[(228,400 - 200,000) / 200,000 \times 100 = 14.2\%\]. Option A (15.8) and Option B (6.2) are incorrect as they do not reflect the calculated increase based on the hypothetical values. Option D (6.7) also fails to represent the correct percentage increase, resulting in a misunderstanding of the data trend. Thus, 14.2% accurately captures the change in median sales price.
Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Based on the scatter plot, what is the range of ages of the top 10 runners?
- A. 9
- B. 1
- C. 16
- D. 40
Correct Answer & Rationale
Correct Answer: C
The range of ages is determined by subtracting the youngest runner's age from the oldest runner's age. In this case, the scatter plot indicates that the youngest runner is 16 years old and the oldest is 32 years old. Thus, the range is 32 - 16 = 16 years. Option A (9) incorrectly suggests a smaller age difference, while B (1) implies almost no age variation, neither of which aligns with the data presented. Option D (40) overestimates the age range, indicating a misunderstanding of the plotted values. Therefore, the accurate calculation of 16 years reflects the true age span of the top 10 runners.
The range of ages is determined by subtracting the youngest runner's age from the oldest runner's age. In this case, the scatter plot indicates that the youngest runner is 16 years old and the oldest is 32 years old. Thus, the range is 32 - 16 = 16 years. Option A (9) incorrectly suggests a smaller age difference, while B (1) implies almost no age variation, neither of which aligns with the data presented. Option D (40) overestimates the age range, indicating a misunderstanding of the plotted values. Therefore, the accurate calculation of 16 years reflects the true age span of the top 10 runners.
Factor the expression completely: 45bcx - 10ax
- A. 5x(9bc - 2a)
- B. 5(9bc - 2a)
- C. x(45bc - 10a)
- D. 5x(9bc + 2a)
Correct Answer & Rationale
Correct Answer: A
To factor the expression 45bcx - 10ax completely, we start by identifying the greatest common factor (GCF). The GCF of the coefficients 45 and 10 is 5, and both terms contain the variable x. Thus, we can factor out 5x, resulting in 5x(9bc - 2a). Option A accurately reflects this factorization. Option B lacks the variable x, which is essential in the original expression. Option C incorrectly factors out only x, missing the GCF of 5. Option D alters the sign of the second term, which does not represent the original expression correctly.
To factor the expression 45bcx - 10ax completely, we start by identifying the greatest common factor (GCF). The GCF of the coefficients 45 and 10 is 5, and both terms contain the variable x. Thus, we can factor out 5x, resulting in 5x(9bc - 2a). Option A accurately reflects this factorization. Option B lacks the variable x, which is essential in the original expression. Option C incorrectly factors out only x, missing the GCF of 5. Option D alters the sign of the second term, which does not represent the original expression correctly.