The equation d/f = g represents gallons of gasoline used, g, in terms of distance traveled in miles, d, and fuel efficiency, / miles per gallon of gasoline. Which combination of distance traveled and fuel efficiency uses 3 gallons of gasoline?
- A. 7 miles and 21 miles per gallon
- B. 57 miles and 19 miles per gallon
- C. 23 miles and 20 miles per gallon
- D. 32 miles and 35 miles per gallon
Correct Answer & Rationale
Correct Answer: B
To determine which combination uses 3 gallons of gasoline, we can rearrange the equation d/f = g to find d = g * f. For g = 3 gallons, we calculate d for each option. A: 7 miles and 21 mpg results in d = 3 * 21 = 63 miles, which is incorrect. B: 57 miles and 19 mpg gives d = 3 * 19 = 57 miles, matching the distance traveled. C: 23 miles and 20 mpg leads to d = 3 * 20 = 60 miles, which is incorrect. D: 32 miles and 35 mpg results in d = 3 * 35 = 105 miles, which is also incorrect. Only option B correctly satisfies the equation for 3 gallons of gasoline used.
To determine which combination uses 3 gallons of gasoline, we can rearrange the equation d/f = g to find d = g * f. For g = 3 gallons, we calculate d for each option. A: 7 miles and 21 mpg results in d = 3 * 21 = 63 miles, which is incorrect. B: 57 miles and 19 mpg gives d = 3 * 19 = 57 miles, matching the distance traveled. C: 23 miles and 20 mpg leads to d = 3 * 20 = 60 miles, which is incorrect. D: 32 miles and 35 mpg results in d = 3 * 35 = 105 miles, which is also incorrect. Only option B correctly satisfies the equation for 3 gallons of gasoline used.
Other Related Questions
Last weekend, 625 runners entered a 10,000-meter race. A 10,000- meter race is 6.2 miles long. Ruben won the race with a finishing time of 29 minutes 51 seconds.
The graphs show information about the top 10 runners.
Based on the histogram, which statement describes the finishing time of the runner in position 3?
- A. The finishing time was between 30 and 31 minutes
- B. The finishing time was between 33 and 34 minutes
- C. The finishing time was between 31 and 32 minutes
- D. The finishing time was between 32 and 33 minutes
Correct Answer & Rationale
Correct Answer: C
The finishing time for the runner in position 3 falls within the 31 to 32 minutes range, as indicated by the histogram. This range is supported by the data distribution, showing that the majority of runners in the top 10 finished within this timeframe. Option A is incorrect because it suggests a time between 30 and 31 minutes, which does not align with the position 3 runner's time. Option B is inaccurate, as it indicates a finishing time between 33 and 34 minutes, which is too high for this position. Option D, while close, incorrectly suggests a time between 32 and 33 minutes, which does not match the histogram data for the third place runner.
The finishing time for the runner in position 3 falls within the 31 to 32 minutes range, as indicated by the histogram. This range is supported by the data distribution, showing that the majority of runners in the top 10 finished within this timeframe. Option A is incorrect because it suggests a time between 30 and 31 minutes, which does not align with the position 3 runner's time. Option B is inaccurate, as it indicates a finishing time between 33 and 34 minutes, which is too high for this position. Option D, while close, incorrectly suggests a time between 32 and 33 minutes, which does not match the histogram data for the third place runner.
Dominic built a dog pen with a perimeter of 72 feet (ft). It is shaped like a hexagon composed of two quadrilaterals as shown in the diagram. Side g of the dog pen is a gate. What is the length, in feet, of the gate?
- A. 10
- B. 5
- C. 8
- D. 12
Correct Answer & Rationale
Correct Answer: D
To find the length of the gate (side g) in the hexagonal dog pen, we first calculate the total length of the remaining sides. Given a perimeter of 72 feet, we can deduce that the combined length of the other five sides must be 72 feet minus the length of the gate. Option D (12 feet) makes sense because if the gate is 12 feet, the remaining sides total 60 feet, which can be reasonably distributed among the five sides of a hexagon. Option A (10 feet) would leave 62 feet for the other sides, making it difficult to achieve a balanced hexagonal shape. Option B (5 feet) would require the remaining sides to total 67 feet, which is impractical for a hexagonal configuration. Option C (8 feet) results in 64 feet for the other sides, also presenting a similar issue of balance. Thus, the only feasible length for the gate that maintains a proper hexagonal structure is 12 feet.
To find the length of the gate (side g) in the hexagonal dog pen, we first calculate the total length of the remaining sides. Given a perimeter of 72 feet, we can deduce that the combined length of the other five sides must be 72 feet minus the length of the gate. Option D (12 feet) makes sense because if the gate is 12 feet, the remaining sides total 60 feet, which can be reasonably distributed among the five sides of a hexagon. Option A (10 feet) would leave 62 feet for the other sides, making it difficult to achieve a balanced hexagonal shape. Option B (5 feet) would require the remaining sides to total 67 feet, which is impractical for a hexagonal configuration. Option C (8 feet) results in 64 feet for the other sides, also presenting a similar issue of balance. Thus, the only feasible length for the gate that maintains a proper hexagonal structure is 12 feet.
Solve the equation for x: ½ x + 9 = -2/3 x
- A. x=-9/7
- B. x=-54/7
- C. x=-6
- D. x=-54
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( \frac{1}{2}x + 9 = -\frac{2}{3}x \), start by eliminating the fractions. Multiply the entire equation by 6 (the least common multiple of 2 and 3) to obtain \( 3x + 54 = -4x \). Next, combine like terms: adding \( 4x \) to both sides gives \( 7x + 54 = 0 \), leading to \( 7x = -54 \) and thus \( x = -\frac{54}{7} \). Option A is incorrect as it simplifies to a different value. Option C, \( x = -6 \), does not satisfy the original equation. Option D, \( x = -54 \), is also incorrect as it does not balance the equation. Therefore, the only viable solution is \( x = -\frac{54}{7} \).
To solve the equation \( \frac{1}{2}x + 9 = -\frac{2}{3}x \), start by eliminating the fractions. Multiply the entire equation by 6 (the least common multiple of 2 and 3) to obtain \( 3x + 54 = -4x \). Next, combine like terms: adding \( 4x \) to both sides gives \( 7x + 54 = 0 \), leading to \( 7x = -54 \) and thus \( x = -\frac{54}{7} \). Option A is incorrect as it simplifies to a different value. Option C, \( x = -6 \), does not satisfy the original equation. Option D, \( x = -54 \), is also incorrect as it does not balance the equation. Therefore, the only viable solution is \( x = -\frac{54}{7} \).
Laura walks every evening on the edges of a sports field near her house. The field is in the shape of a rectangle 300 feet (ft) long and 200 ft wide, so 1 lap on the edges of the field is 1,000 ft. She enters through a gate at point G, located exactly halfway along the length of the field.
Laura counts the number of strides she takes during her daily walks. She takes about 80 strides to walk the width of the field from Z to W. Assuming that her stride length does not change, about how many strides does Laura take to walk all the way around the edge of the field?
- A. 267
- B. 320
- C. 450
- D. 400
Correct Answer & Rationale
Correct Answer: D
To determine the number of strides Laura takes to walk around the field, we first calculate the total distance of one lap, which is 1,000 feet. Since Laura takes 80 strides to walk the 200 ft width, her stride length is 2.5 ft (200 ft ÷ 80 strides). To find the total number of strides for the 1,000 ft lap, we divide the lap distance by her stride length: 1,000 ft ÷ 2.5 ft/stride = 400 strides. Option A (267) underestimates her stride count, while B (320) and C (450) do not align with her stride length calculation, leading to incorrect totals. Thus, 400 strides accurately reflects her walking distance around the field.
To determine the number of strides Laura takes to walk around the field, we first calculate the total distance of one lap, which is 1,000 feet. Since Laura takes 80 strides to walk the 200 ft width, her stride length is 2.5 ft (200 ft ÷ 80 strides). To find the total number of strides for the 1,000 ft lap, we divide the lap distance by her stride length: 1,000 ft ÷ 2.5 ft/stride = 400 strides. Option A (267) underestimates her stride count, while B (320) and C (450) do not align with her stride length calculation, leading to incorrect totals. Thus, 400 strides accurately reflects her walking distance around the field.