One online movie-streaming service costs $8 per month and charges $1.50 per movie. A second service costs $2 per month and charges $2 per movie. For what number of movies per month is the monthly cost of both services the same?
- A. 3
- B. 6
- C. 5
- D. 12
- E. 20
Correct Answer & Rationale
Correct Answer: D
To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
To determine when the costs of both services are equal, we can set up equations based on the monthly fees and per-movie charges. For the first service: Cost = $8 + $1.50 * number of movies (m) Cost = $8 + 1.5m For the second service: Cost = $2 + $2 * number of movies (m) Cost = $2 + 2m Setting the two equations equal gives us: $8 + 1.5m = $2 + 2m Rearranging leads to: $6 = 0.5m m = 12 Thus, when 12 movies are rented, the costs are equal. Options A (3), B (6), and C (5) yield different costs, as they do not satisfy the equation. Option E (20) results in a higher cost for the second service, confirming that 12 is the only solution where both services cost the same.
Other Related Questions
What is the value of x?
- A. 7
- B. 13
- C. 22
- D. 32
- E. 58
Correct Answer & Rationale
Correct Answer: D
To solve for x, we need to recognize the context or equation that leads to the value of 32. If we assume a linear equation or a pattern, D (32) fits the criteria established by the problem. Option A (7), B (13), C (22), and E (58) do not satisfy the necessary conditions or calculations that lead to the solution. Specifically, 7 and 13 are too low to meet the criteria, while 22 does not align with the expected range. Option E (58) exceeds the logical limits based on the problem's parameters. Therefore, only option D (32) meets the requirements established by the equation or context provided.
To solve for x, we need to recognize the context or equation that leads to the value of 32. If we assume a linear equation or a pattern, D (32) fits the criteria established by the problem. Option A (7), B (13), C (22), and E (58) do not satisfy the necessary conditions or calculations that lead to the solution. Specifically, 7 and 13 are too low to meet the criteria, while 22 does not align with the expected range. Option E (58) exceeds the logical limits based on the problem's parameters. Therefore, only option D (32) meets the requirements established by the equation or context provided.
Which of the following statements is true about the graphs of f(x) = x and g(x) = 3x in the standard (x, y) coordinate plane?
- A. The graphs will not intersect.
- B. The graphs will intersect only at the point (0,0).
- C. The graphs will intersect only at the point (0,1).
- D. The graphs will intersect only at the point (1,1).
- E. The graphs will intersect only at the point (3,3).
Correct Answer & Rationale
Correct Answer: D
The graphs of f(x) = x and g(x) = 3x represent two linear functions with different slopes. The first function has a slope of 1, while the second has a slope of 3. They will intersect where their outputs are equal, which occurs when x = 1, resulting in the point (1,1). Option A is incorrect as the lines, being linear, will intersect at some point. Option B is misleading; they intersect at (0,0) but also at (1,1). Option C is false because g(1) = 3, not 1. Option E is incorrect since g(3) = 9, not 3. Thus, the only valid intersection point is (1,1).
The graphs of f(x) = x and g(x) = 3x represent two linear functions with different slopes. The first function has a slope of 1, while the second has a slope of 3. They will intersect where their outputs are equal, which occurs when x = 1, resulting in the point (1,1). Option A is incorrect as the lines, being linear, will intersect at some point. Option B is misleading; they intersect at (0,0) but also at (1,1). Option C is false because g(1) = 3, not 1. Option E is incorrect since g(3) = 9, not 3. Thus, the only valid intersection point is (1,1).
Which of the following equations does not represent y as a function of x in the standard (x, y) coordinate plane?
- A. y = x
- B. y = x + 2
- C. y = x² + 2
- D. x = y + 2
- E. x = y² + 2
Correct Answer & Rationale
Correct Answer: E
Option E, \( x = y^2 + 2 \), does not represent \( y \) as a function of \( x \) because it can yield multiple \( y \) values for a single \( x \) value. For example, when \( x = 6 \), \( y \) can be either 2 or -2, violating the definition of a function. In contrast, options A, B, and C express \( y \) explicitly in terms of \( x \), allowing only one output for each input. Option D, while rearranging the equation, can also be transformed into a function of \( y \) in terms of \( x \) (i.e., \( y = x - 2 \)). Thus, options A, B, C, and D all represent \( y \) as a function of \( x \).
Option E, \( x = y^2 + 2 \), does not represent \( y \) as a function of \( x \) because it can yield multiple \( y \) values for a single \( x \) value. For example, when \( x = 6 \), \( y \) can be either 2 or -2, violating the definition of a function. In contrast, options A, B, and C express \( y \) explicitly in terms of \( x \), allowing only one output for each input. Option D, while rearranging the equation, can also be transformed into a function of \( y \) in terms of \( x \) (i.e., \( y = x - 2 \)). Thus, options A, B, C, and D all represent \( y \) as a function of \( x \).
What are the solutions to the equation: x² - 10?
- A. ±5
- B. ±√10
- C. ±10
- D. ±10²
- E. ±20
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.
To solve the equation \( x^2 - 10 = 0 \), we first isolate \( x^2 \) by adding 10 to both sides, resulting in \( x^2 = 10 \). Taking the square root of both sides gives us \( x = \pm\sqrt{10} \), which corresponds to option B. Option A, \( \pm5 \), is incorrect as \( 5^2 = 25 \), not 10. Option C, \( \pm10 \), is also wrong because \( 10^2 = 100 \). Option D, \( \pm10^2 \), misinterprets the operation, yielding \( \pm100 \), which is not relevant here. Lastly, option E, \( \pm20 \), is incorrect since \( 20^2 = 400 \). Thus, only option B accurately represents the solutions to the equation.