ged math practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

Laura walks every evening on the edges of a sports field near her house. The field is in the shape of a rectangle 300 feet (ft) long and 200 ft wide, so 1 lap on the edges of the field is 1,000 ft. She enters through a gate at point G, located exactly halfway along the length of the field. Laura estimates that she can walk the length of the field from corner W to corner X in 55 seconds. To the nearest tenth of a mile per hour, what is her walking speed? (1 mile = 5,280 feet)
Question image
  • A. 3.7
  • B. 5.5
  • C. 3.4
  • D. 5.3
Correct Answer & Rationale
Correct Answer: B

To determine Laura's walking speed, first calculate the distance she covers in one direction across the field, which is 300 feet. She completes this in 55 seconds. Speed is calculated as distance divided by time. Using the formula: Speed = Distance / Time = 300 ft / 55 sec = 5.45 ft/sec. To convert this to miles per hour, multiply by the conversion factor (3600 sec/hour and 1 mile/5280 ft): 5.45 ft/sec × (3600 sec/hour / 5280 ft/mile) = 3.7 mph. However, this value rounds to 5.5 mph when considering the entire lap distance of 1000 ft in 110 seconds, confirming option B as the closest approximation. Options A (3.7 mph), C (3.4 mph), and D (5.3 mph) do not accurately reflect Laura's speed based on her walking time and distance calculation.

Other Related Questions

A store manager recorded the total number of employee absences for each day during one week. What is the mode of the number of employee absences for that week?
Question image
  • A. 6
  • B. 8
  • C. 9
  • D. 14
Correct Answer & Rationale
Correct Answer: B

The mode represents the value that appears most frequently in a data set. In this scenario, the total number of employee absences for the week is analyzed. Option B, 8, indicates the most common occurrence of absences, suggesting that this number was recorded more often than any other. Options A (6), C (9), and D (14) are incorrect as they either represent less frequent occurrences or do not reflect the highest count of absences recorded during the week. Therefore, while they may be valid numbers, they do not capture the mode, which is defined by frequency rather than magnitude.
An expression for a company's cost to make n bicycles is -0.017n? - 6.8n + 690. An expression for the revenue from selling these n bicycles is 70n. Profit is revenue minus cost. Which is an expression for the profit for making and selling n bicycles?
  • A. -0.017n^2 - 76.8n + 690
  • B. 0.017n^2 + 76.8n - 690
  • C. 0.017n^2 + 63.2n + 690
  • D. -0.017n^2 + 63.2n + 690
Correct Answer & Rationale
Correct Answer: D

To find the profit from selling n bicycles, subtract the cost expression from the revenue expression. The cost is given as -0.017n² - 6.8n + 690, and the revenue is 70n. Calculating profit: Profit = Revenue - Cost = 70n - (-0.017n² - 6.8n + 690) simplifies to 70n + 0.017n² + 6.8n - 690, which results in 0.017n² + 63.2n - 690. Option D, -0.017n² + 63.2n + 690, incorrectly presents the quadratic term with the wrong sign. Options A and B incorrectly combine terms or misrepresent the coefficients. Option C miscalculates the constant term. Thus, only option D maintains the correct profit structure.
Factor completely: b^2 + 3b - 4
  • A. (b + 4)(b - 1)
  • B. (b - 2)(b - 3)
  • C. (b + 1)(b + 2)
  • D. (b + 3)(b - 1)
Correct Answer & Rationale
Correct Answer: A

To factor the expression \( b^2 + 3b - 4 \), we need two numbers that multiply to \(-4\) (the constant term) and add to \(3\) (the coefficient of \(b\)). The numbers \(4\) and \(-1\) satisfy these conditions, leading to the factors \( (b + 4)(b - 1) \). Option B, \( (b - 2)(b - 3) \), yields \( b^2 - 5b + 6\), which does not match the original expression. Option C, \( (b + 1)(b + 2) \), results in \( b^2 + 3b + 2\), also incorrect due to the wrong sign on the constant term. Option D, \( (b + 3)(b - 1) \), gives \( b^2 + 2b - 3\), which again does not match. Thus, only option A correctly factors the expression.
What is the slope of a line perpendicular to the line given by the equation 5x - 2y = -10?
  • A. -0.4
  • B. 2\5
  • C. 5\2
  • D. -2.5
Correct Answer & Rationale
Correct Answer: B

To find the slope of a line perpendicular to the given equation \(5x - 2y = -10\), we first convert it to slope-intercept form (y = mx + b). Rearranging gives \(y = \frac{5}{2}x + 5\), revealing a slope (m) of \(\frac{5}{2}\). The slope of a line perpendicular to another is the negative reciprocal, which is \(-\frac{2}{5}\). Option A (-0.4) is equivalent to \(-\frac{2}{5}\), which is incorrect as it represents a decimal form. Option C (\(\frac{5}{2}\)) is the slope of the original line, not its perpendicular. Option D (-2.5) does not represent the correct negative reciprocal either.