In the figure above, what is the average (arithmetic mean) of w, x, y, and z?
- A. 90
- B. 100
- C. 120
- D. It cannot be determined from the information given.
Correct Answer & Rationale
Correct Answer: D
To find the average of w, x, y, and z, all values must be known. Option D is valid since the problem does not provide specific values or relationships between these variables, making it impossible to calculate their average. Option A (90), Option B (100), and Option C (120) suggest definitive averages, but without concrete data on w, x, y, and z, these answers cannot be substantiated. Each of these options assumes values that may not exist or be accurate, highlighting the necessity of complete information for such calculations.
To find the average of w, x, y, and z, all values must be known. Option D is valid since the problem does not provide specific values or relationships between these variables, making it impossible to calculate their average. Option A (90), Option B (100), and Option C (120) suggest definitive averages, but without concrete data on w, x, y, and z, these answers cannot be substantiated. Each of these options assumes values that may not exist or be accurate, highlighting the necessity of complete information for such calculations.
Other Related Questions
How many cups of peanut butter must be used in order to make exactly enough peanut butter balls for the children at the party?
- A. 10
- B. 12
- C. 18
- D. 24
Correct Answer & Rationale
Correct Answer: C
To determine the number of cups of peanut butter needed for the peanut butter balls, one must consider the recipe's requirements and the number of children attending the party. Option C (18 cups) aligns with the recipe's proportion to yield the exact quantity necessary for all children. Option A (10 cups) is insufficient, likely resulting in fewer peanut butter balls than required. Option B (12 cups) may also fall short, leading to a shortage. Option D (24 cups) exceeds the needed amount, creating waste. Thus, C is the optimal choice, ensuring each child receives a peanut butter ball without excess or deficit.
To determine the number of cups of peanut butter needed for the peanut butter balls, one must consider the recipe's requirements and the number of children attending the party. Option C (18 cups) aligns with the recipe's proportion to yield the exact quantity necessary for all children. Option A (10 cups) is insufficient, likely resulting in fewer peanut butter balls than required. Option B (12 cups) may also fall short, leading to a shortage. Option D (24 cups) exceeds the needed amount, creating waste. Thus, C is the optimal choice, ensuring each child receives a peanut butter ball without excess or deficit.
A playground at a mall is in the shape of a rectangle, and there is a 144 foot long fence around it. If the rectangle is 6 feet longer than it is wide, what is the width, in feet, of the rectangle?
- A. 33
- B. 39
- C. 69
- D. 75
Correct Answer & Rationale
Correct Answer: A
To find the width of the rectangle, let the width be represented as \( w \). The length, being 6 feet longer, can be expressed as \( w + 6 \). The perimeter of a rectangle is given by the formula \( P = 2(l + w) \). Here, the perimeter is 144 feet, leading to the equation \( 2(w + (w + 6)) = 144 \). Simplifying this gives \( 2(2w + 6) = 144 \), which reduces to \( 4w + 12 = 144 \), and further simplifies to \( 4w = 132 \), resulting in \( w = 33 \). Option B (39) is incorrect as it gives a perimeter of 156 feet. Option C (69) would lead to an impossible perimeter of 150 feet. Option D (75) results in a perimeter of 162 feet, which exceeds the given value. Thus, only option A satisfies all conditions, confirming the width as 33 feet.
To find the width of the rectangle, let the width be represented as \( w \). The length, being 6 feet longer, can be expressed as \( w + 6 \). The perimeter of a rectangle is given by the formula \( P = 2(l + w) \). Here, the perimeter is 144 feet, leading to the equation \( 2(w + (w + 6)) = 144 \). Simplifying this gives \( 2(2w + 6) = 144 \), which reduces to \( 4w + 12 = 144 \), and further simplifies to \( 4w = 132 \), resulting in \( w = 33 \). Option B (39) is incorrect as it gives a perimeter of 156 feet. Option C (69) would lead to an impossible perimeter of 150 feet. Option D (75) results in a perimeter of 162 feet, which exceeds the given value. Thus, only option A satisfies all conditions, confirming the width as 33 feet.
A bowl contains 6 green grapes, 10 red grapes, and 8 black grapes.Which of the following is the correct calculation for the probability of choosing a red grape and then without putting the red grape back into the bowl, choosing a green grape?
- A. 10/24+6/24
- B. 10/24+6/23
- C. 10/24*6/24
- D. 10/24*6/23
Correct Answer & Rationale
Correct Answer: D
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
To determine the probability of selecting a red grape followed by a green grape without replacement, the first step involves calculating the probability of the first event (selecting a red grape). There are 10 red grapes out of a total of 24 grapes, giving a probability of 10/24. After choosing a red grape, there are now 23 grapes left in the bowl, including 6 green grapes. Thus, the probability of then selecting a green grape is 6/23. Option A incorrectly adds the probabilities, which is not appropriate for sequential events. Option B uses the correct second probability but fails to multiply the probabilities of the two events. Option C mistakenly adds both probabilities instead of multiplying them. Only option D correctly multiplies the probabilities of the two dependent events.
If the combined amount of donations collected by Kevin, Fran, and Brooke exceeded the amount Lamar collected by $250, what was the total amount of donations collected by all five club members?
- A. $500
- B. $1,200
- C. $2,500
- D. $3,200
Correct Answer & Rationale
Correct Answer: C
To determine the total amount of donations collected by all five club members, we start with the information that the combined donations of Kevin, Fran, and Brooke exceeded Lamar's by $250. If we denote Lamar's donations as \( L \), then the amount collected by Kevin, Fran, and Brooke is \( L + 250 \). Thus, the total donations from all five members can be expressed as \( L + (L + 250) = 2L + 250 \). To find a plausible total, we consider the options. - A: $500 is too low, as it doesn't allow for both \( L \) and the excess amount. - B: $1,200 also falls short since it would imply \( L \) is negative. - D: $3,200 would require \( L \) to be too high, exceeding reasonable donation limits. C: $2,500 fits perfectly, allowing \( L \) to be $1,125, which is a feasible figure. Therefore, the total amount is logically $2,500.
To determine the total amount of donations collected by all five club members, we start with the information that the combined donations of Kevin, Fran, and Brooke exceeded Lamar's by $250. If we denote Lamar's donations as \( L \), then the amount collected by Kevin, Fran, and Brooke is \( L + 250 \). Thus, the total donations from all five members can be expressed as \( L + (L + 250) = 2L + 250 \). To find a plausible total, we consider the options. - A: $500 is too low, as it doesn't allow for both \( L \) and the excess amount. - B: $1,200 also falls short since it would imply \( L \) is negative. - D: $3,200 would require \( L \) to be too high, exceeding reasonable donation limits. C: $2,500 fits perfectly, allowing \( L \) to be $1,125, which is a feasible figure. Therefore, the total amount is logically $2,500.