How many more tickets did Larry buy than Jim?
- A. 3
- B. 12
- C. 6
- D. 1
Correct Answer & Rationale
Correct Answer: C
To determine how many more tickets Larry bought than Jim, we need to compare their ticket purchases. If Larry bought 9 tickets and Jim bought 3, the difference is 9 - 3 = 6. Option A (3) is incorrect because it underestimates the difference. Option B (12) is too high, suggesting Larry bought significantly more than he actually did. Option D (1) also miscalculates the difference, indicating a minimal discrepancy. Thus, the accurate difference of 6 aligns with option C, reflecting the true number of tickets Larry purchased over Jim.
To determine how many more tickets Larry bought than Jim, we need to compare their ticket purchases. If Larry bought 9 tickets and Jim bought 3, the difference is 9 - 3 = 6. Option A (3) is incorrect because it underestimates the difference. Option B (12) is too high, suggesting Larry bought significantly more than he actually did. Option D (1) also miscalculates the difference, indicating a minimal discrepancy. Thus, the accurate difference of 6 aligns with option C, reflecting the true number of tickets Larry purchased over Jim.
Other Related Questions
What is the value of the expression 2j - 7jkm when j = 5, k = -14, and m = -3?
Correct Answer & Rationale
Correct Answer: A
To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.
To evaluate the expression \(2j - 7jkm\) with \(j = 5\), \(k = -14\), and \(m = -3\), first substitute the values: 1. Calculate \(2j\): \(2 \times 5 = 10\). 2. Calculate \(7jkm\): \(7 \times 5 \times -14 \times -3 = 1470\). 3. Combine the results: \(10 - 1470 = -1460\). Thus, the value of the expression is \(-1460\). Other options are incorrect because they either miscalculate the substitutions or the arithmetic operations involved, leading to different results that do not match the evaluated expression.
Solve the equation for x: ½ x + 9 = -2/3 x
- A. x=-9/7
- B. x=-54/7
- C. x=-6
- D. x=-54
Correct Answer & Rationale
Correct Answer: B
To solve the equation \( \frac{1}{2}x + 9 = -\frac{2}{3}x \), start by eliminating the fractions. Multiply the entire equation by 6 (the least common multiple of 2 and 3) to obtain \( 3x + 54 = -4x \). Next, combine like terms: adding \( 4x \) to both sides gives \( 7x + 54 = 0 \), leading to \( 7x = -54 \) and thus \( x = -\frac{54}{7} \). Option A is incorrect as it simplifies to a different value. Option C, \( x = -6 \), does not satisfy the original equation. Option D, \( x = -54 \), is also incorrect as it does not balance the equation. Therefore, the only viable solution is \( x = -\frac{54}{7} \).
To solve the equation \( \frac{1}{2}x + 9 = -\frac{2}{3}x \), start by eliminating the fractions. Multiply the entire equation by 6 (the least common multiple of 2 and 3) to obtain \( 3x + 54 = -4x \). Next, combine like terms: adding \( 4x \) to both sides gives \( 7x + 54 = 0 \), leading to \( 7x = -54 \) and thus \( x = -\frac{54}{7} \). Option A is incorrect as it simplifies to a different value. Option C, \( x = -6 \), does not satisfy the original equation. Option D, \( x = -54 \), is also incorrect as it does not balance the equation. Therefore, the only viable solution is \( x = -\frac{54}{7} \).
A diver jumps from a platform. The height, h meters, the diver is above the water t seconds after jumping is represented by h = -16t^2 + 16t + 6.5. To the near hundredth of a second, how many seconds after jumping is the diver 2.5 meters above the water?
- A. 2.79
- B. 1.32
- C. 2.83
- D. 1.21
Correct Answer & Rationale
Correct Answer: D
To find when the diver is 2.5 meters above the water, substitute h = 2.5 into the equation: \[ 2.5 = -16t^2 + 16t + 6.5. \] Rearranging gives: \[ -16t^2 + 16t + 4 = 0. \] Using the quadratic formula, we solve for t, yielding two potential solutions. The option D (1.21 seconds) is valid as it falls within the realistic time frame of the jump. Options A (2.79) and C (2.83) exceed the expected time of descent, while B (1.32) does not satisfy the equation, confirming that only D accurately represents the diver's position at 2.5 meters above the water.
To find when the diver is 2.5 meters above the water, substitute h = 2.5 into the equation: \[ 2.5 = -16t^2 + 16t + 6.5. \] Rearranging gives: \[ -16t^2 + 16t + 4 = 0. \] Using the quadratic formula, we solve for t, yielding two potential solutions. The option D (1.21 seconds) is valid as it falls within the realistic time frame of the jump. Options A (2.79) and C (2.83) exceed the expected time of descent, while B (1.32) does not satisfy the equation, confirming that only D accurately represents the diver's position at 2.5 meters above the water.
Which expression is undefined over the real numbers?
- A. (-3)^0
- B. 0/4
- C. |-2|
- D. (-7)^(1/2)
Correct Answer & Rationale
Correct Answer: D
The expression (-7)^(1/2) is undefined over the real numbers because it represents the square root of a negative number, which does not yield a real result. Option A, (-3)^0, equals 1, as any non-zero number raised to the power of 0 is defined. Option B, 0/4, simplifies to 0, which is a defined real number. Option C, |-2|, equals 2, as the absolute value of any number is always defined and non-negative. Thus, only (-7)^(1/2) fails to produce a real number, making it the only undefined expression in this context.
The expression (-7)^(1/2) is undefined over the real numbers because it represents the square root of a negative number, which does not yield a real result. Option A, (-3)^0, equals 1, as any non-zero number raised to the power of 0 is defined. Option B, 0/4, simplifies to 0, which is a defined real number. Option C, |-2|, equals 2, as the absolute value of any number is always defined and non-negative. Thus, only (-7)^(1/2) fails to produce a real number, making it the only undefined expression in this context.