Connor sprinted 55 yards in 6.25 seconds. What was Connor's average speed in miles per hour?
- A. 6
- B. 9
- C. 15
- D. 18
- E. 26
Correct Answer & Rationale
Correct Answer: D
To find Connor's average speed in miles per hour, we first convert 55 yards to miles. There are 1,760 yards in a mile, so 55 yards is approximately 0.0312 miles. Next, we convert 6.25 seconds to hours by dividing by 3,600 (the number of seconds in an hour), resulting in about 0.001736 hours. Average speed is calculated by dividing distance by time: 0.0312 miles / 0.001736 hours ≈ 18 mph. Option A (6 mph) and B (9 mph) underestimate Connor's speed, while C (15 mph) is also too low. E (26 mph) overestimates it. Thus, 18 mph is the accurate average speed.
To find Connor's average speed in miles per hour, we first convert 55 yards to miles. There are 1,760 yards in a mile, so 55 yards is approximately 0.0312 miles. Next, we convert 6.25 seconds to hours by dividing by 3,600 (the number of seconds in an hour), resulting in about 0.001736 hours. Average speed is calculated by dividing distance by time: 0.0312 miles / 0.001736 hours ≈ 18 mph. Option A (6 mph) and B (9 mph) underestimate Connor's speed, while C (15 mph) is also too low. E (26 mph) overestimates it. Thus, 18 mph is the accurate average speed.
Other Related Questions
Square PQRS, with a side length of 5 units, will be translated 2 units to the right and 2 units up in the standard (x, y) coordinate plane. What is the area, in square units, of the image of PQRS?
- A. 20
- B. 25
- C. 40
- D. 50
- E. 100
Correct Answer & Rationale
Correct Answer: B
The area of a square is calculated by squaring the length of its sides. For square PQRS, with a side length of 5 units, the area is \(5 \times 5 = 25\) square units. Translating the square 2 units to the right and 2 units up does not alter its dimensions or area; it simply changes its position on the coordinate plane. Options A (20), C (40), D (50), and E (100) suggest changes in area due to incorrect assumptions about the effects of translation or miscalculations. The area remains constant at 25 square units, confirming option B as the only accurate choice.
The area of a square is calculated by squaring the length of its sides. For square PQRS, with a side length of 5 units, the area is \(5 \times 5 = 25\) square units. Translating the square 2 units to the right and 2 units up does not alter its dimensions or area; it simply changes its position on the coordinate plane. Options A (20), C (40), D (50), and E (100) suggest changes in area due to incorrect assumptions about the effects of translation or miscalculations. The area remains constant at 25 square units, confirming option B as the only accurate choice.
Let f(x) = 3x². What is f(-2x)?
- A. -36x²
- B. -12x²
- C. -6x²
- D. 12x²
- E. 36x²
Correct Answer & Rationale
Correct Answer: D
To find f(-2x), substitute -2x into the function f(x) = 3x². This gives us f(-2x) = 3(-2x)². Calculating (-2x)² results in 4x², so we have f(-2x) = 3 * 4x² = 12x². Option A (-36x²) is incorrect because it misapplies the square and the coefficient. Option B (-12x²) incorrectly uses a negative sign and fails to account for the square of -2x. Option C (-6x²) mistakenly reduces the coefficient and sign. Option E (36x²) omits the multiplication by 3, leading to an incorrect coefficient. Thus, 12x² is the only valid outcome.
To find f(-2x), substitute -2x into the function f(x) = 3x². This gives us f(-2x) = 3(-2x)². Calculating (-2x)² results in 4x², so we have f(-2x) = 3 * 4x² = 12x². Option A (-36x²) is incorrect because it misapplies the square and the coefficient. Option B (-12x²) incorrectly uses a negative sign and fails to account for the square of -2x. Option C (-6x²) mistakenly reduces the coefficient and sign. Option E (36x²) omits the multiplication by 3, leading to an incorrect coefficient. Thus, 12x² is the only valid outcome.
sqrt(45) is between what two consecutive whole numbers?
- A. 4 and 5
- B. 5 and 6
- C. 6 and 7
- D. 14 and 15
- E. 22 and 23
Correct Answer & Rationale
Correct Answer: C
To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
To determine between which two consecutive whole numbers \(\sqrt{45}\) lies, we can evaluate the squares of whole numbers around it. Calculating, \(6^2 = 36\) and \(7^2 = 49\). Since \(36 < 45 < 49\), it follows that \(6 < \sqrt{45} < 7\). Therefore, \(\sqrt{45}\) is between 6 and 7. Option A (4 and 5) is incorrect as \(4^2 = 16\) and \(5^2 = 25\), which are both less than 45. Option B (5 and 6) is also wrong since \(5^2 = 25\) and \(6^2 = 36\) are still below 45. Option D (14 and 15) and Option E (22 and 23) are far too high, as \(14^2 = 196\) and \(22^2 = 484\) exceed 45.
Quadrilateral ABCD satisfies the following conditions: Side AB is parallel to side CD, Side BC is not parallel to side AD. Which term is the best classification for quadrilateral ABCD?
- A. Parallelogram
- B. Rectangle
- C. Rhombus
- D. Square
- E. Trapezoid
Correct Answer & Rationale
Correct Answer: E
Quadrilateral ABCD has one pair of parallel sides (AB and CD), which defines it as a trapezoid. Option A, parallelogram, is incorrect because both pairs of opposite sides must be parallel. Option B, rectangle, is a specific type of parallelogram with right angles, so it also requires two pairs of parallel sides. Option C, rhombus, similarly demands both pairs of opposite sides to be parallel, along with equal side lengths. Option D, square, is a special type of rectangle and rhombus, necessitating both pairs of parallel sides and equal side lengths. Thus, the only classification that fits is trapezoid.
Quadrilateral ABCD has one pair of parallel sides (AB and CD), which defines it as a trapezoid. Option A, parallelogram, is incorrect because both pairs of opposite sides must be parallel. Option B, rectangle, is a specific type of parallelogram with right angles, so it also requires two pairs of parallel sides. Option C, rhombus, similarly demands both pairs of opposite sides to be parallel, along with equal side lengths. Option D, square, is a special type of rectangle and rhombus, necessitating both pairs of parallel sides and equal side lengths. Thus, the only classification that fits is trapezoid.