In 1908, a huge explosion known as the Tunguska Event flattened trees for miles across a remote area of Russia. Scientists now think an asteroid or a comet entered Earth's atmosphere, causing the explosion. Ice core samples from an ice sheet in Greenland reveal signs of this enormous explosion: deposits of ammonia equal to 5 micrograms per square meter. But how exactly did these telltale molecules form?
• Hypothesis 1: The Tunguska explosion started forest fires, known to produce ammonia. Data indicates that such fires would have deposited an amount of ammonia over the Northern Hemisphere equaling 0.1 micrograms per square meter.
• Hypothesis 2: Up to 1% of the object's mass might have been ammonia, and this ammonia might have spread over the Northern Hemisphere. Approximately 0.00005 micrograms of ammonia per square meter are predicted by this hypothesis.
• Hypothesis 3: Since many compounds form in the presence of high heat, the ammonia could
have been produced as the falling object heated the atmosphere. However, heat alone is not
sufficient to cause the formation of ammonia.
• Hypothesis 4: As it passed through the atmosphere, the object pushed air in front of it at high pressure. Nitrogen and hydrogen combine to form ammonia under similar pressure. Considering the amount of hydrogen expected in a comet and the available nitrogen in Earth's atmosphere, approximately 5 micrograms of ammonia per square meter would have been deposited under this hypothesis.
best explains the ammonia deposits found in ice core samples from the time of the Tunguska Event. The evidence that best supports the validity of this hypothesis is the-
- A. Hypothesis 2
- B. heat produced by fast-moving objects in the atmosphere
- C. Hypothesis 1
- D. match between measured and predicted amounts of ammonia
Correct Answer & Rationale
Correct Answer: A,D
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
Other Related Questions
Which hypothesis is suitable for this investigation?
- A. Body temperature, breathing rate, and heart rate depend on the health of the subject.
- B. Many of the body's systems respond to exercise.
- C. Body temperature, breathing rate, and heart rate increase with exercise.
- D. Subjects at rest have better health than subjects that exercise.
Correct Answer & Rationale
Correct Answer: C
Option C effectively addresses the investigation by predicting a specific relationship: that body temperature, breathing rate, and heart rate will increase with exercise. This hypothesis is testable and directly relates to physiological responses during physical activity. Option A is too broad, as it suggests a general relationship between health and various physiological metrics without focusing on exercise. Option B, while relevant, lacks specificity regarding the measurable changes in body temperature, breathing rate, and heart rate. Option D presents a misleading comparison, as it contradicts established knowledge about the benefits of exercise for health.
Option C effectively addresses the investigation by predicting a specific relationship: that body temperature, breathing rate, and heart rate will increase with exercise. This hypothesis is testable and directly relates to physiological responses during physical activity. Option A is too broad, as it suggests a general relationship between health and various physiological metrics without focusing on exercise. Option B, while relevant, lacks specificity regarding the measurable changes in body temperature, breathing rate, and heart rate. Option D presents a misleading comparison, as it contradicts established knowledge about the benefits of exercise for health.
Maria places a rock in a graduated cylinder containing some water as a step in calculating the density of the rock, as shown below. What is the combined volume of the water and rock in the graduated cylinder?
- A. 9 mL
- B. 26 mL
- C. 30 mL
- D. 15 mL
Correct Answer & Rationale
Correct Answer: C
To determine the combined volume of the water and rock in the graduated cylinder, we need to consider the displacement method. When Maria adds the rock to the water, the water level rises according to the volume of the rock. If the initial water level was, for example, 20 mL, and the rock displaces an additional 10 mL, the total volume would be 30 mL. Option A (9 mL) is too low, as it does not account for the volume of both the water and the rock. Option B (26 mL) may suggest a smaller rock or lower initial water level, but does not reflect typical measurements. Option D (15 mL) is also too low, failing to include the rock's volume adequately. Thus, 30 mL accurately represents the total volume when both water and rock are combined.
To determine the combined volume of the water and rock in the graduated cylinder, we need to consider the displacement method. When Maria adds the rock to the water, the water level rises according to the volume of the rock. If the initial water level was, for example, 20 mL, and the rock displaces an additional 10 mL, the total volume would be 30 mL. Option A (9 mL) is too low, as it does not account for the volume of both the water and the rock. Option B (26 mL) may suggest a smaller rock or lower initial water level, but does not reflect typical measurements. Option D (15 mL) is also too low, failing to include the rock's volume adequately. Thus, 30 mL accurately represents the total volume when both water and rock are combined.
A scientist studying solubility increased the temperature of a constant volume of water and measured the amount of sugar that dissolved into solution... Which of the following describes the relationship between the independent and dependent variables?
- A. As the amount of dissolved sugar increased, the temperature of the water decreased.
- B. As the water temperature increased, the amount of dissolved sugar increased.
- C. As the amount of dissolved sugar increased, the amount of water remained constant.
- D. As the water temperature increased, the amount of water decreased.
Correct Answer & Rationale
Correct Answer: B
Option B accurately describes the relationship between the independent variable (temperature of the water) and the dependent variable (amount of dissolved sugar). As temperature rises, solubility typically increases, allowing more sugar to dissolve. Option A incorrectly suggests an inverse relationship; higher temperatures do not cause the amount of dissolved sugar to decrease. Option C, while true, does not address the relationship between the two variables in question. Option D incorrectly implies that increasing temperature leads to a decrease in water volume, which is not relevant in this context.
Option B accurately describes the relationship between the independent variable (temperature of the water) and the dependent variable (amount of dissolved sugar). As temperature rises, solubility typically increases, allowing more sugar to dissolve. Option A incorrectly suggests an inverse relationship; higher temperatures do not cause the amount of dissolved sugar to decrease. Option C, while true, does not address the relationship between the two variables in question. Option D incorrectly implies that increasing temperature leads to a decrease in water volume, which is not relevant in this context.
What is the relationship between the kinetic energy of the feather and of the hammer just before they hit the surface of the Moon?
- A. The hammer has more kinetic energy than the feather because it has a greater mass.
- B. Both objects have the same kinetic energy because they fell with the same velocity.
- C. The hammer has more kinetic energy than the feather because it will accelerate faster than the feather.
- D. Both objects have the same kinetic energy because gravity pulls on both objects equally.
Correct Answer & Rationale
Correct Answer: A
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.