Which of the following is true about the nucleus of an atom?
- A. The nucleus has a negative charge.
- B. The nucleus is neutral with no charge.
- C. The electrons and protons are located in the nucleus.
- D. The neutrons and protons are located in the nucleus.
Correct Answer & Rationale
Correct Answer: D
The nucleus of an atom is composed of protons and neutrons, making option D accurate. Protons carry a positive charge, while neutrons are neutral, contributing to the overall positive charge of the nucleus. Option A is incorrect because the nucleus does not have a negative charge; it is positively charged due to protons. Option B is also wrong, as the nucleus is not neutral; it has a positive charge from the protons. Lastly, option C is misleading because electrons are located outside the nucleus in electron shells, not within it.
The nucleus of an atom is composed of protons and neutrons, making option D accurate. Protons carry a positive charge, while neutrons are neutral, contributing to the overall positive charge of the nucleus. Option A is incorrect because the nucleus does not have a negative charge; it is positively charged due to protons. Option B is also wrong, as the nucleus is not neutral; it has a positive charge from the protons. Lastly, option C is misleading because electrons are located outside the nucleus in electron shells, not within it.
Other Related Questions
Which of the following best explains why an ice skater is able to coast on ice for a long distance without pushing off in a straight line across the ice?
- A. The force of friction on the blades of the skates is greater than the force of friction on the ice.
- B. The force of friction on the blades of the skates is less than the force of friction on the ice.
- C. The ice exerts a constant forward force on the skater.
- D. The buoyant force on the blades of the skates is greater than the weight of the skater.
Correct Answer & Rationale
Correct Answer: B
An ice skater can glide smoothly due to the minimal friction between the skate blades and the ice, which is significantly lower than the friction experienced on other surfaces. This reduced friction allows the skater to maintain momentum over longer distances without needing to push off. Option A is incorrect because it suggests greater friction on the blades, which would hinder movement. Option C is misleading, as the ice does not exert a forward force; instead, the skater continues moving due to existing momentum. Option D is also wrong; while buoyancy affects weight in water, it does not apply to ice skating, where weight and friction are the primary factors.
An ice skater can glide smoothly due to the minimal friction between the skate blades and the ice, which is significantly lower than the friction experienced on other surfaces. This reduced friction allows the skater to maintain momentum over longer distances without needing to push off. Option A is incorrect because it suggests greater friction on the blades, which would hinder movement. Option C is misleading, as the ice does not exert a forward force; instead, the skater continues moving due to existing momentum. Option D is also wrong; while buoyancy affects weight in water, it does not apply to ice skating, where weight and friction are the primary factors.
Which of the following is a statement that proposes a possible explanation for a phenomenon and can be tested through experimentation?
- A. An observation
- B. A variable
- C. An experiment
- D. A hypothesis
Correct Answer & Rationale
Correct Answer: D
A hypothesis is a statement that proposes a possible explanation for a phenomenon and can be tested through experimentation. It serves as a foundation for scientific inquiry. Option A, an observation, refers to data gathered through the senses and does not propose an explanation. Option B, a variable, is a factor that can change in an experiment but does not itself explain phenomena. Option C, an experiment, is a method used to test a hypothesis but is not a statement proposing an explanation. Thus, only a hypothesis encapsulates a testable explanation.
A hypothesis is a statement that proposes a possible explanation for a phenomenon and can be tested through experimentation. It serves as a foundation for scientific inquiry. Option A, an observation, refers to data gathered through the senses and does not propose an explanation. Option B, a variable, is a factor that can change in an experiment but does not itself explain phenomena. Option C, an experiment, is a method used to test a hypothesis but is not a statement proposing an explanation. Thus, only a hypothesis encapsulates a testable explanation.
Which of the following best describes what happens when two magnets repel each other?
- A. The objects are pulled toward one another.
- B. The objects are pushed away from one another.
- C. An electric spark jumps from one object to another.
- D. Nothing happens until the objects are touched.
Correct Answer & Rationale
Correct Answer: B
When two magnets repel each other, they exert forces that push away from one another due to their like poles (north-north or south-south). This repulsion is a fundamental property of magnetism. Option A is incorrect because it describes attraction, which occurs when opposite poles (north-south) interact. Option C is misleading; electric sparks are not a typical result of magnet repulsion. Option D is also wrong, as repulsion occurs before any physical contact, demonstrating the active interaction between the magnets. Thus, the best description of this phenomenon is that the objects are pushed away from one another.
When two magnets repel each other, they exert forces that push away from one another due to their like poles (north-north or south-south). This repulsion is a fundamental property of magnetism. Option A is incorrect because it describes attraction, which occurs when opposite poles (north-south) interact. Option C is misleading; electric sparks are not a typical result of magnet repulsion. Option D is also wrong, as repulsion occurs before any physical contact, demonstrating the active interaction between the magnets. Thus, the best description of this phenomenon is that the objects are pushed away from one another.
Which of the following best describes a chemical change?
- A. The melting of ice into water.
- B. The breaking of a piece of glass.
- C. The burning of wood in a fireplace.
- D. The bending of a metal wire.
Correct Answer & Rationale
Correct Answer: C
A chemical change involves a transformation that alters the substance's chemical structure. Option A describes a physical change, where ice melts into water without changing its chemical composition. Option B also represents a physical change; breaking glass does not alter the glass's chemical identity. Option D, bending a metal wire, is another physical change, as the metal's composition remains the same despite its shape being altered. In contrast, burning wood in a fireplace (Option C) results in new substances, such as ash and gases, indicating a chemical change has occurred.
A chemical change involves a transformation that alters the substance's chemical structure. Option A describes a physical change, where ice melts into water without changing its chemical composition. Option B also represents a physical change; breaking glass does not alter the glass's chemical identity. Option D, bending a metal wire, is another physical change, as the metal's composition remains the same despite its shape being altered. In contrast, burning wood in a fireplace (Option C) results in new substances, such as ash and gases, indicating a chemical change has occurred.