Which of the following is a true statement about sodium chloride (NaCl)?
- A. It is a gas at room temperature.
- B. It is a compound formed from two elements.
- C. It is a mixture formed from two different compounds.
- D. It is an element that is unstable and reactive.
Correct Answer & Rationale
Correct Answer: B
Sodium chloride (NaCl) is indeed a compound formed from two elements: sodium (Na) and chlorine (Cl), which combine in a fixed ratio through ionic bonding. Option A is incorrect; NaCl is a solid at room temperature, not a gas. Option C misrepresents NaCl as a mixture, but it is a pure compound, not formed from different compounds. Option D inaccurately describes NaCl as an element; it is a stable compound, not unstable or reactive under normal conditions. Thus, option B accurately reflects the nature of sodium chloride.
Sodium chloride (NaCl) is indeed a compound formed from two elements: sodium (Na) and chlorine (Cl), which combine in a fixed ratio through ionic bonding. Option A is incorrect; NaCl is a solid at room temperature, not a gas. Option C misrepresents NaCl as a mixture, but it is a pure compound, not formed from different compounds. Option D inaccurately describes NaCl as an element; it is a stable compound, not unstable or reactive under normal conditions. Thus, option B accurately reflects the nature of sodium chloride.
Other Related Questions
A student is conducting an experiment to determine how the temperature of water affects the rate at which sugar dissolves. The student uses four beakers with the same amount of water at different temperatures: 20C, 40C, 60C, and 80C. The student adds the same amount of sugar to each beaker and stirs for the same length of time. Which of the following is the independent variable in this experiment?
- A. The amount of sugar added to each beaker.
- B. The temperature of the water in each beaker.
- C. The time it takes for the sugar to dissolve.
- D. The amount of stirring done in each beaker.
Correct Answer & Rationale
Correct Answer: B
In this experiment, the temperature of the water in each beaker is the independent variable, as it is the factor that the student deliberately changes to observe its effect on sugar dissolution. Option A, the amount of sugar, remains constant across all beakers, making it a controlled variable rather than an independent one. Option C, the time taken for sugar to dissolve, is the dependent variable, as it is measured to assess the impact of the temperature. Option D, the amount of stirring, is also controlled to ensure consistency in the experiment. Thus, only the temperature is varied to determine its influence on the rate of dissolution.
In this experiment, the temperature of the water in each beaker is the independent variable, as it is the factor that the student deliberately changes to observe its effect on sugar dissolution. Option A, the amount of sugar, remains constant across all beakers, making it a controlled variable rather than an independent one. Option C, the time taken for sugar to dissolve, is the dependent variable, as it is measured to assess the impact of the temperature. Option D, the amount of stirring, is also controlled to ensure consistency in the experiment. Thus, only the temperature is varied to determine its influence on the rate of dissolution.
Which of the following best describes what happens when two magnets repel each other?
- A. The objects are pulled toward one another.
- B. The objects are pushed away from one another.
- C. An electric spark jumps from one object to another.
- D. Nothing happens until the objects are touched.
Correct Answer & Rationale
Correct Answer: B
When two magnets repel each other, they exert forces that push away from one another due to their like poles (north-north or south-south). This repulsion is a fundamental property of magnetism. Option A is incorrect because it describes attraction, which occurs when opposite poles (north-south) interact. Option C is misleading; electric sparks are not a typical result of magnet repulsion. Option D is also wrong, as repulsion occurs before any physical contact, demonstrating the active interaction between the magnets. Thus, the best description of this phenomenon is that the objects are pushed away from one another.
When two magnets repel each other, they exert forces that push away from one another due to their like poles (north-north or south-south). This repulsion is a fundamental property of magnetism. Option A is incorrect because it describes attraction, which occurs when opposite poles (north-south) interact. Option C is misleading; electric sparks are not a typical result of magnet repulsion. Option D is also wrong, as repulsion occurs before any physical contact, demonstrating the active interaction between the magnets. Thus, the best description of this phenomenon is that the objects are pushed away from one another.
An object is lifted above the floor to a height X, as illustrated, and then released. Which of the following best describes the object's energy?
- A. At height X, the energy is kinetic and changes to potential as the object falls.
- B. At height X, the energy is potential and changes to kinetic as the object falls.
- C. At height X, the energy is zero and the object gains both kinetic and potential energy as it falls.
- D. At height X, the energy is potential and the object gains kinetic energy as it falls, while its potential energy decreases.
Correct Answer & Rationale
Correct Answer: B
At height X, the object possesses gravitational potential energy due to its elevated position. As it falls, this potential energy is converted into kinetic energy, which increases as the object accelerates toward the ground. Option A is incorrect because at height X, the energy is primarily potential, not kinetic. Option C misrepresents the energy state; the energy is not zero at height X. Option D partially describes the process but does not clarify that the potential energy is transformed into kinetic energy, which is essential to understanding energy conservation during the fall.
At height X, the object possesses gravitational potential energy due to its elevated position. As it falls, this potential energy is converted into kinetic energy, which increases as the object accelerates toward the ground. Option A is incorrect because at height X, the energy is primarily potential, not kinetic. Option C misrepresents the energy state; the energy is not zero at height X. Option D partially describes the process but does not clarify that the potential energy is transformed into kinetic energy, which is essential to understanding energy conservation during the fall.
The pitch of a sound is related to which of the following properties of a sound wave?
- A. Speed
- B. Frequency
- C. Amplitude
- D. Energy
Correct Answer & Rationale
Correct Answer: B
The pitch of a sound is directly related to its frequency, which refers to how many sound wave cycles occur in one second. Higher frequencies produce higher pitches, while lower frequencies result in lower pitches. Option A, speed, refers to how fast sound travels through a medium but does not affect pitch. Option C, amplitude, relates to the loudness or intensity of a sound rather than its pitch. Option D, energy, is associated with the overall power of the sound wave but does not determine pitch. Thus, frequency is the key property that defines the pitch of a sound.
The pitch of a sound is directly related to its frequency, which refers to how many sound wave cycles occur in one second. Higher frequencies produce higher pitches, while lower frequencies result in lower pitches. Option A, speed, refers to how fast sound travels through a medium but does not affect pitch. Option C, amplitude, relates to the loudness or intensity of a sound rather than its pitch. Option D, energy, is associated with the overall power of the sound wave but does not determine pitch. Thus, frequency is the key property that defines the pitch of a sound.