ged science and practice test

A a high school equivalency exam designed for individuals who did not graduate from high school but want to demonstrate they have the same knowledge and skills as a high school graduate

In 1908, a huge explosion known as the Tunguska Event flattened trees for miles across a remote area of Russia. Scientists now think an asteroid or a comet entered Earth's atmosphere, causing the explosion. Ice core samples from an ice sheet in Greenland reveal signs of this enormous explosion: deposits of ammonia equal to 5 micrograms per square meter. But how exactly did these telltale molecules form? • Hypothesis 1: The Tunguska explosion started forest fires, known to produce ammonia. Data indicates that such fires would have deposited an amount of ammonia over the Northern Hemisphere equaling 0.1 micrograms per square meter. • Hypothesis 2: Up to 1% of the object's mass might have been ammonia, and this ammonia might have spread over the Northern Hemisphere. Approximately 0.00005 micrograms of ammonia per square meter are predicted by this hypothesis. • Hypothesis 3: Since many compounds form in the presence of high heat, the ammonia could have been produced as the falling object heated the atmosphere. However, heat alone is not sufficient to cause the formation of ammonia. • Hypothesis 4: As it passed through the atmosphere, the object pushed air in front of it at high pressure. Nitrogen and hydrogen combine to form ammonia under similar pressure. Considering the amount of hydrogen expected in a comet and the available nitrogen in Earth's atmosphere, approximately 5 micrograms of ammonia per square meter would have been deposited under this hypothesis.
What natural process is required to connect the ice core data to the Tunguska Event?
  • A. the cycling of carbon in forest fires
  • B. the interaction of comets with the solar wind
  • C. the movement of glaciers due to gravity
  • D. the constant mixing of the atmosphere
Correct Answer & Rationale
Correct Answer: D

Connecting ice core data to the Tunguska Event necessitates understanding atmospheric dynamics, which is achieved through the constant mixing of the atmosphere. This mixing disperses particles and gases, allowing researchers to correlate ice core samples with historical events, including the Tunguska explosion. Option A, the cycling of carbon in forest fires, is unrelated to the atmospheric conditions or the specific data derived from ice cores. Option B, the interaction of comets with the solar wind, pertains to space phenomena rather than terrestrial atmospheric processes. Option C, the movement of glaciers due to gravity, describes glacial dynamics but does not address the atmospheric mixing needed to link ice core data to the event.

Other Related Questions

If these results correctly predict the performance of this kneepad design, what is the probability that one of the kneepads will require a force of 145 N or greater to cause failure?
Question image
  • A. 53%
  • B. 22%
  • C. 75%
  • D. 25%
Correct Answer & Rationale
Correct Answer: D

To determine the probability of a kneepad requiring a force of 145 N or greater to cause failure, we analyze the data provided. The correct option, 25%, indicates that one-fourth of the kneepads are expected to fail under this force, aligning with statistical predictions for this design. Option A (53%) overestimates the likelihood, suggesting more than half will fail, which is not supported by the data. Option B (22%) underestimates the probability, indicating fewer kneepads will fail than expected. Option C (75%) is excessively high, implying a significant majority would fail, which contradicts the predicted performance. Thus, 25% accurately reflects the failure rate at this force threshold.
best explains the ammonia deposits found in ice core samples from the time of the Tunguska Event. The evidence that best supports the validity of this hypothesis is the-
  • A. Hypothesis 2
  • B. heat produced by fast-moving objects in the atmosphere
  • C. Hypothesis 1
  • D. match between measured and predicted amounts of ammonia
Correct Answer & Rationale
Correct Answer: A,D

The ammonia deposits found in ice core samples from the time of the Tunguska Event suggest a significant environmental impact. Hypothesis 2 (Option A) likely proposes a link between the event and the ammonia presence, making it relevant for explaining the deposits. Option B, which discusses heat from fast-moving objects, does not directly address ammonia production or accumulation. Hypothesis 1 (Option C) may not provide sufficient evidence or detail to support the ammonia findings. Option D highlights the alignment between measured and predicted ammonia levels, reinforcing the validity of Hypothesis 2 as it connects empirical data with theoretical expectations.
What is the relationship between the kinetic energy of the feather and of the hammer just before they hit the surface of the Moon?
Question image
  • A. The hammer has more kinetic energy than the feather because it has a greater mass.
  • B. Both objects have the same kinetic energy because they fell with the same velocity.
  • C. The hammer has more kinetic energy than the feather because it will accelerate faster than the feather.
  • D. Both objects have the same kinetic energy because gravity pulls on both objects equally.
Correct Answer & Rationale
Correct Answer: A

The hammer possesses more kinetic energy than the feather due to its greater mass, as kinetic energy is calculated using the formula KE = 0.5 * mass * velocity². While both objects fall at the same rate in a vacuum, their velocities are equal, but the hammer’s larger mass results in higher kinetic energy. Option B is incorrect because, although they have the same velocity, kinetic energy also depends on mass. Option C misrepresents the situation; both objects accelerate at the same rate in a vacuum. Option D is misleading; while gravity affects both equally, it does not determine kinetic energy, which also requires consideration of mass.
Which statement from the passage refutes Lavoisier's idea that heat is a fluid that leaves a hot substance and travels to a colder substance?
  • A. He also found the brass filings produced from the drilling process contained enough heat to boil water while retaining their weight.
  • B. James Joule discovered that heat could be produced by moving a wire through a magnetic field.
  • C. Lavoisier demonstrated that oxygen was required for combustion.
  • D. Count Rumford observed that the process of boring out cannons from brass cylinders continuously produced heat.
Correct Answer & Rationale
Correct Answer: A

Option A effectively refutes Lavoisier's notion of heat as a fluid by demonstrating that heat can be generated without the transfer of a fluid. The brass filings, despite retaining their weight, produced sufficient heat to boil water, indicating that heat can arise from mechanical processes rather than fluid movement. Option B, while highlighting Joule's discovery of heat production through motion, does not directly address Lavoisier's fluid concept. Option C focuses on combustion and oxygen's role, which is unrelated to the nature of heat itself. Option D describes an observation of heat generation during a mechanical process but does not emphasize the implications for Lavoisier's fluid theory as clearly as A does.