The radius of the sphere below is 6 centimeters (cm). What is the volume, in cubic centimeters, of the sphere?
- A. 904.32
- B. 150.72
- C. 25.12
- D. 75.36
Correct Answer & Rationale
Correct Answer: A
To find the volume of a sphere, the formula \( V = \frac{4}{3} \pi r^3 \) is used, where \( r \) is the radius. For a radius of 6 cm, the calculation is: \[ V = \frac{4}{3} \pi (6)^3 = \frac{4}{3} \pi (216) \approx 904.32 \, \text{cm}^3 \] Option A (904.32) correctly represents this volume. Option B (150.72) and Option C (25.12) are significantly lower than the actual volume, indicating miscalculations or incorrect application of the formula. Option D (75.36) is also incorrect, as it does not appropriately reflect the cubic growth of the volume with respect to the radius, resulting in an underestimation.
To find the volume of a sphere, the formula \( V = \frac{4}{3} \pi r^3 \) is used, where \( r \) is the radius. For a radius of 6 cm, the calculation is: \[ V = \frac{4}{3} \pi (6)^3 = \frac{4}{3} \pi (216) \approx 904.32 \, \text{cm}^3 \] Option A (904.32) correctly represents this volume. Option B (150.72) and Option C (25.12) are significantly lower than the actual volume, indicating miscalculations or incorrect application of the formula. Option D (75.36) is also incorrect, as it does not appropriately reflect the cubic growth of the volume with respect to the radius, resulting in an underestimation.
Other Related Questions
Solve the inequality for x: -4/3 x + 4 ? 16
- A. x??9
- B. x??9
- C. x??9
- D. x?9
Correct Answer & Rationale
Correct Answer: A
To solve the inequality \(-\frac{4}{3}x + 4 < 16\), first isolate \(x\) by subtracting 4 from both sides, resulting in \(-\frac{4}{3}x < 12\). Next, multiply both sides by \(-\frac{3}{4}\), remembering to reverse the inequality sign, yielding \(x > 9\). Options B and C incorrectly suggest \(x < 9\), which contradicts our solution. Option D, stating \(x \leq 9\), also misrepresents the inequality since it does not include values greater than 9. Thus, only option A accurately reflects the solution \(x > 9\).
To solve the inequality \(-\frac{4}{3}x + 4 < 16\), first isolate \(x\) by subtracting 4 from both sides, resulting in \(-\frac{4}{3}x < 12\). Next, multiply both sides by \(-\frac{3}{4}\), remembering to reverse the inequality sign, yielding \(x > 9\). Options B and C incorrectly suggest \(x < 9\), which contradicts our solution. Option D, stating \(x \leq 9\), also misrepresents the inequality since it does not include values greater than 9. Thus, only option A accurately reflects the solution \(x > 9\).
The triangle shown in the diagram has an area of 24 square centimeters. What is h, the height in centimeters, of the triangle?
- A. 9
- B. 4
- C. 8
- D. 2
Correct Answer & Rationale
Correct Answer: C
To find the height \( h \) of the triangle, we use the area formula: \( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \). Given the area is 24 cm², we can rearrange the formula to solve for \( h \): \( h = \frac{2 \times \text{Area}}{\text{base}} \). Assuming the base is 6 cm (since \( 24 = \frac{1}{2} \times 6 \times h \)), substituting gives \( h = \frac{48}{6} = 8 \). - Option A (9) is too high, as it would yield an area greater than 24 cm². - Option B (4) results in an area of only 12 cm², which is insufficient. - Option D (2) yields an area of 6 cm², far below the required area. Thus, only option C (8) satisfies the area requirement.
To find the height \( h \) of the triangle, we use the area formula: \( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \). Given the area is 24 cm², we can rearrange the formula to solve for \( h \): \( h = \frac{2 \times \text{Area}}{\text{base}} \). Assuming the base is 6 cm (since \( 24 = \frac{1}{2} \times 6 \times h \)), substituting gives \( h = \frac{48}{6} = 8 \). - Option A (9) is too high, as it would yield an area greater than 24 cm². - Option B (4) results in an area of only 12 cm², which is insufficient. - Option D (2) yields an area of 6 cm², far below the required area. Thus, only option C (8) satisfies the area requirement.
A carpenter is installing shelves in 2 offices. Each office will have 4 shelves. The wood the carpenter wants to use comes in 6-foot-long boards. Each shelf is 2 ¼ feet long and is constructed from a single board. How many boards does the carpenter need to buy to make the shelves?
- A. 2
- B. 8
- C. 3
- D. 4
Correct Answer & Rationale
Correct Answer: D
To determine how many boards are needed, first calculate the total length of wood required for the shelves. Each office has 4 shelves, and with 2 offices, that totals 8 shelves. Each shelf is 2 ¼ feet long, which equals 2.25 feet. Therefore, the total length required is 8 shelves x 2.25 feet = 18 feet. Each board is 6 feet long. Dividing the total length (18 feet) by the length of each board (6 feet) gives 3 boards. However, since each board can only be used for one shelf, and we can't cut a board to make multiple shelves, we need to round up to the nearest whole number of boards needed, which is 4. - Option A (2 boards) is insufficient for the total length required. - Option B (8 boards) exceeds the necessary amount. - Option C (3 boards) miscalculates the total need based on the cut requirement. Thus, 4 boards are necessary to accommodate all shelves without waste.
To determine how many boards are needed, first calculate the total length of wood required for the shelves. Each office has 4 shelves, and with 2 offices, that totals 8 shelves. Each shelf is 2 ¼ feet long, which equals 2.25 feet. Therefore, the total length required is 8 shelves x 2.25 feet = 18 feet. Each board is 6 feet long. Dividing the total length (18 feet) by the length of each board (6 feet) gives 3 boards. However, since each board can only be used for one shelf, and we can't cut a board to make multiple shelves, we need to round up to the nearest whole number of boards needed, which is 4. - Option A (2 boards) is insufficient for the total length required. - Option B (8 boards) exceeds the necessary amount. - Option C (3 boards) miscalculates the total need based on the cut requirement. Thus, 4 boards are necessary to accommodate all shelves without waste.
At a local bank, certificates of deposit (CDs) mature every 9 months. At another bank, CDs mature every 12 months. If CDs are purchased on the same day at each bank and are renewed when they mature, what is the least number of months that will pass before the two banks' CDs are mature at the same time?
- A. 72
- B. 36
- C. 108
- D. 3
Correct Answer & Rationale
Correct Answer: B
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.
To find when the CDs from both banks mature simultaneously, we need to determine the least common multiple (LCM) of their maturity periods: 9 months and 12 months. Calculating the LCM, we see that the multiples of 9 are 9, 18, 27, 36, 45, 54, 63, 72, and 81. The multiples of 12 are 12, 24, 36, 48, 60, 72, and 84. The smallest common multiple is 36 months. Option A (72) is incorrect as it’s not the smallest shared maturity. Option C (108) is also incorrect; it exceeds the LCM. Option D (3) is far too short, as it does not accommodate either maturity period. Thus, 36 months is the earliest point both CDs will mature together.