Emma measured the height of her laptop screen. She reported the height as 8 inches, accurate to the nearest inch. The actual height of the screen must be:
- A. at least 7.5 inches and less than 8.5 inches
- B. at least 7.9 inches and less than 8.1 inches
- C. at least 7.99 inches and less than 8.01 inches
- D. at least 8 inches
- E. exactly 8 inches
Correct Answer & Rationale
Correct Answer: A
When measuring to the nearest inch, values can range from halfway to the next whole number. For Emma's reported height of 8 inches, this means the actual height must be at least 7.5 inches (inclusive) and less than 8.5 inches (exclusive). Option B is too narrow, only allowing for heights between 7.9 and 8.1 inches, which does not encompass all possible values. Option C is even more restrictive, only allowing for heights between 7.99 and 8.01 inches, excluding valid measurements. Option D is incorrect as it suggests the height must be 8 inches or more, which is too limiting. Option E incorrectly states the height must be exactly 8 inches, disregarding the range of possible values.
When measuring to the nearest inch, values can range from halfway to the next whole number. For Emma's reported height of 8 inches, this means the actual height must be at least 7.5 inches (inclusive) and less than 8.5 inches (exclusive). Option B is too narrow, only allowing for heights between 7.9 and 8.1 inches, which does not encompass all possible values. Option C is even more restrictive, only allowing for heights between 7.99 and 8.01 inches, excluding valid measurements. Option D is incorrect as it suggests the height must be 8 inches or more, which is too limiting. Option E incorrectly states the height must be exactly 8 inches, disregarding the range of possible values.
Other Related Questions
Which of the following expressions is equivalent to: 6x³ + 7x² + 1/x?
- A. 63 + 72 + 1/x
- B. 63 + 72 + 1
- C. 6x² + 7x + 1/x
- D. 6x² + 7x + 1
- E. 6x² + 7x² + 1
Correct Answer & Rationale
Correct Answer: C
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
The expression 6x³ + 7x² + 1/x can be simplified by factoring out the highest degree of x and rearranging the terms. Option C, 6x² + 7x + 1/x, contains the correct coefficients for the x terms, but with the degrees adjusted appropriately. Option A incorrectly suggests a constant sum of 63 and 72, which does not relate to the original expression. Option B also misrepresents the original expression by omitting the variable terms entirely. Option D fails to maintain the degree of x in the cubic term, while option E mistakenly combines the x² terms incorrectly, resulting in an inaccurate expression.
When Henry plays the songs on the playlist in a random order, what is the probability a rock song will be played first?
- A. 3/4
- B. 1/3
- C. 1/4
- D. 3/10
- E. 5/16
Correct Answer & Rationale
Correct Answer: D
To find the probability of a rock song being played first, we need to know the total number of songs and how many of those are rock songs. If there are 3 rock songs and a total of 10 songs, the probability is calculated as the number of favorable outcomes (rock songs) divided by the total outcomes (all songs). Thus, the probability is 3/10, which corresponds to option D. Option A (3/4) overestimates the likelihood by implying a much higher proportion of rock songs. Option B (1/3) incorrectly assumes there are fewer total songs than there actually are. Option C (1/4) underrepresents the rock songs available. Option E (5/16) is irrelevant as it does not align with the total number of songs.
To find the probability of a rock song being played first, we need to know the total number of songs and how many of those are rock songs. If there are 3 rock songs and a total of 10 songs, the probability is calculated as the number of favorable outcomes (rock songs) divided by the total outcomes (all songs). Thus, the probability is 3/10, which corresponds to option D. Option A (3/4) overestimates the likelihood by implying a much higher proportion of rock songs. Option B (1/3) incorrectly assumes there are fewer total songs than there actually are. Option C (1/4) underrepresents the rock songs available. Option E (5/16) is irrelevant as it does not align with the total number of songs.
What is the sum of the two polynomials? 4x² + 3x + 5 + x² + 6x - 3?
- A. 4x² + 9x + 2
- B. 5x² + 9x + 2
- C. 5x² + 9x + 8
- D. 4x² + 9x² + 2
- E. 5x² + 9x² + 8
Correct Answer & Rationale
Correct Answer: B
To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
To find the sum of the polynomials \(4x^2 + 3x + 5\) and \(x^2 + 6x - 3\), we combine like terms. 1. For \(x^2\) terms: \(4x^2 + x^2 = 5x^2\). 2. For \(x\) terms: \(3x + 6x = 9x\). 3. For constant terms: \(5 - 3 = 2\). Thus, the resulting polynomial is \(5x^2 + 9x + 2\), which corresponds to option B. Option A incorrectly adds the \(x^2\) terms, leading to an incorrect polynomial. Option C miscalculates the constant term. Option D mistakenly adds the \(x^2\) terms incorrectly and does not follow proper polynomial addition. Option E also miscalculates by incorrectly summing the \(x^2\) terms and the constants.
The following is a list of triangles: I. Right triangles, II. Isosceles triangles, III. Equilateral triangles. A pair of triangles from which of these groups must be similar to each other?
- A. I only
- B. II only
- C. III only
- D. I and III only
Correct Answer & Rationale
Correct Answer: C
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.
Triangles from group III, equilateral triangles, are always similar to each other because they all have equal angles of 60 degrees, regardless of their size. Group I, right triangles, can vary significantly in angle measures beyond the right angle, so not all right triangles are similar. Similarly, group II, isosceles triangles, can have different base angles, leading to non-similar triangles. Thus, while right and isosceles triangles can share properties, only equilateral triangles guarantee similarity across the group. Therefore, option C accurately identifies the group with universally similar triangles.