An object is lifted above the floor to a height X, as illustrated, and then released. Which of the following best describes the object's energy?
- A. At height X, the energy is kinetic and changes to potential as the object falls.
- B. At height X, the energy is potential and changes to kinetic as the object falls.
- C. At height X, the energy is zero and the object gains both kinetic and potential energy as it falls.
- D. At height X, the energy is potential and the object gains kinetic energy as it falls, while its potential energy decreases.
Correct Answer & Rationale
Correct Answer: B
At height X, the object possesses gravitational potential energy due to its elevated position. As it falls, this potential energy is converted into kinetic energy, which increases as the object accelerates toward the ground. Option A is incorrect because at height X, the energy is primarily potential, not kinetic. Option C misrepresents the energy state; the energy is not zero at height X. Option D partially describes the process but does not clarify that the potential energy is transformed into kinetic energy, which is essential to understanding energy conservation during the fall.
At height X, the object possesses gravitational potential energy due to its elevated position. As it falls, this potential energy is converted into kinetic energy, which increases as the object accelerates toward the ground. Option A is incorrect because at height X, the energy is primarily potential, not kinetic. Option C misrepresents the energy state; the energy is not zero at height X. Option D partially describes the process but does not clarify that the potential energy is transformed into kinetic energy, which is essential to understanding energy conservation during the fall.
Other Related Questions
Which of the following was the dependent variable in this investigation?
- A. The wingspan
- B. The flight distance
- C. The stopwatch
- D. The tape measure
Correct Answer & Rationale
Correct Answer: B
In this investigation, the dependent variable is the outcome that is measured in response to changes in the independent variable. Flight distance (B) reflects how far something travels, which depends on the conditions set by the experiment. Wingspan (A) is an independent variable if it is being manipulated to see its effect on flight distance. The stopwatch (C) is a tool used to measure time and does not represent a variable in the experiment. Similarly, the tape measure (D) is an instrument for measuring distance, not a variable being tested. Thus, flight distance is the key outcome that reflects the effects of the experiment.
In this investigation, the dependent variable is the outcome that is measured in response to changes in the independent variable. Flight distance (B) reflects how far something travels, which depends on the conditions set by the experiment. Wingspan (A) is an independent variable if it is being manipulated to see its effect on flight distance. The stopwatch (C) is a tool used to measure time and does not represent a variable in the experiment. Similarly, the tape measure (D) is an instrument for measuring distance, not a variable being tested. Thus, flight distance is the key outcome that reflects the effects of the experiment.
Which of the following is a true statement about sodium chloride (NaCl)?
- A. It is a gas at room temperature.
- B. It is a compound formed from two elements.
- C. It is a mixture formed from two different compounds.
- D. It is an element that is unstable and reactive.
Correct Answer & Rationale
Correct Answer: B
Sodium chloride (NaCl) is indeed a compound formed from two elements: sodium (Na) and chlorine (Cl), which combine in a fixed ratio through ionic bonding. Option A is incorrect; NaCl is a solid at room temperature, not a gas. Option C misrepresents NaCl as a mixture, but it is a pure compound, not formed from different compounds. Option D inaccurately describes NaCl as an element; it is a stable compound, not unstable or reactive under normal conditions. Thus, option B accurately reflects the nature of sodium chloride.
Sodium chloride (NaCl) is indeed a compound formed from two elements: sodium (Na) and chlorine (Cl), which combine in a fixed ratio through ionic bonding. Option A is incorrect; NaCl is a solid at room temperature, not a gas. Option C misrepresents NaCl as a mixture, but it is a pure compound, not formed from different compounds. Option D inaccurately describes NaCl as an element; it is a stable compound, not unstable or reactive under normal conditions. Thus, option B accurately reflects the nature of sodium chloride.
The rotation of Earth around its axis is responsible for which of the following?
- A. The force of gravity
- B. The day and night cycle
- C. The temperature differences between seasons
- D. The movement of continents relative to one another
Correct Answer & Rationale
Correct Answer: B
The rotation of Earth around its axis creates the day and night cycle, as different parts of the planet face the Sun and then move into its shadow. This explains why we experience daytime and nighttime in a 24-hour period. Option A is incorrect; gravity is primarily caused by Earth's mass, not its rotation. Option C is also wrong; temperature differences between seasons are due to Earth's tilt and its orbit around the Sun, not its rotation. Lastly, option D misrepresents the concept; the movement of continents is influenced by tectonic activity, not the rotation of Earth.
The rotation of Earth around its axis creates the day and night cycle, as different parts of the planet face the Sun and then move into its shadow. This explains why we experience daytime and nighttime in a 24-hour period. Option A is incorrect; gravity is primarily caused by Earth's mass, not its rotation. Option C is also wrong; temperature differences between seasons are due to Earth's tilt and its orbit around the Sun, not its rotation. Lastly, option D misrepresents the concept; the movement of continents is influenced by tectonic activity, not the rotation of Earth.
Which of the following best describes what happens when two magnets repel each other?
- A. The objects are pulled toward one another.
- B. The objects are pushed away from one another.
- C. An electric spark jumps from one object to another.
- D. Nothing happens until the objects are touched.
Correct Answer & Rationale
Correct Answer: B
When two magnets repel each other, they exert forces that push away from one another due to their like poles (north-north or south-south). This repulsion is a fundamental property of magnetism. Option A is incorrect because it describes attraction, which occurs when opposite poles (north-south) interact. Option C is misleading; electric sparks are not a typical result of magnet repulsion. Option D is also wrong, as repulsion occurs before any physical contact, demonstrating the active interaction between the magnets. Thus, the best description of this phenomenon is that the objects are pushed away from one another.
When two magnets repel each other, they exert forces that push away from one another due to their like poles (north-north or south-south). This repulsion is a fundamental property of magnetism. Option A is incorrect because it describes attraction, which occurs when opposite poles (north-south) interact. Option C is misleading; electric sparks are not a typical result of magnet repulsion. Option D is also wrong, as repulsion occurs before any physical contact, demonstrating the active interaction between the magnets. Thus, the best description of this phenomenon is that the objects are pushed away from one another.